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Abstract
Purpose – Marine transportation has been faced with an increasing demand for containerized cargo during
the past decade. Marine container terminals (MCTs), as the facilities for connecting seaborne and inland
transportation, are expected to handle the increasing amount of containers, delivered by vessels. Berth
scheduling plays an important role for the total throughput of MCTs as well as the overall effectiveness of the
MCT operations. This study aims to propose a novel island-based metaheuristic algorithm to solve the berth
scheduling problem andminimize the total cost of serving the arriving vessels at theMCT.
Design/methodology/approach – A universal island-based metaheuristic algorithm (UIMA) was
proposed in this study, aiming to solve the spatially constrained berth scheduling problem. The UIMA
population was divided into four sub-populations (i.e. islands). Unlike the canonical island-based algorithms
that execute the same metaheuristic on each island, four different population-based metaheuristics are
adopted within the developed algorithm to search the islands, including the following: evolutionary algorithm
(EA), particle swarm optimization (PSO), estimation of distribution algorithm (EDA) and differential
evolution (DE). The adopted population-based metaheuristic algorithms rely on different operators, which
facilitate the search process for superior solutions on the UIMA islands.
Findings – The conducted numerical experiments demonstrated that the developed UIMA algorithm
returned near-optimal solutions for the small-size problem instances. As for the large-size problem instances,
UIMAwas found to be superior to the EA, PSO, EDA and DE algorithms, which were executed in isolation, in
terms of the obtained objective function values at termination. Furthermore, the developed UIMA algorithm
outperformed various single-solution-based metaheuristic algorithms (including variable neighborhood
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search, tabu search and simulated annealing) in terms of the solution quality. The maximum UIMA
computational time did not exceed 306 s.
Research limitations/implications – Some of the previous berth scheduling studies modeled uncertain
vessel arrival times and/or handling times, while this study assumed the vessel arrival and handling times to
be deterministic.
Practical implications – The developed UIMA algorithm can be used by the MCT operators as an
efficient decision support tool and assist with a cost-effective design of berth schedules within an acceptable
computational time.
Originality/value – A novel island-based metaheuristic algorithm is designed to solve the spatially
constrained berth scheduling problem. The proposed island-based algorithm adopts several types of
metaheuristic algorithms to cover different areas of the search space. The considered metaheuristic
algorithms rely on different operators. Such feature is expected to facilitate the search process for superior
solutions.

Keywords Optimization, Supply chains, Marine transportation, Berth scheduling,
Island-based algorithms, Marine container terminals, Parallel algorithms

Paper type Research paper

1. Introduction
During the past three decades, the offshoring of manufacturing activities (i.e. relocation of
the production facilities or supply basins to a foreign country, aiming to decrease the
production expenses) has become a popular approach and was adopted by a lot of firms (Da
Silveira, 2014). This tendency has created an increasing demand for containerized marine
transportation and global trade. Hence, the marine container terminal (MCT) operators are
expected to enhance the MCT operations, given the available handling resources, to increase
the MCT throughput and effectively serve the growing demand. The basic operations at
each MCT can be classified into the seaside operations, the marshaling yard operations, and
the landside operations (Dulebenets et al., 2018). This study investigates the seaside
operations with a primary focus on the berth scheduling problem (BSP). The BSP is a
decision problem, in which the arriving vessels have to be assigned to the available berthing
positions, and the order of vessel service has to be determined for each berthing position
(Bierwirth andMeisel, 2015).

The berth scheduling process can be classified into three different levels, including (Zhen
et al., 2017):

(1) monthly berth planning;
(2) weekly berth planning; and
(3) daily berth planning.

The monthly berth planning is based on the initial information regarding the vessels’
monthly arrival plans. Also, the information regarding the physical specifications of the
arriving vessels is exchanged between the liner shipping companies and the MCT operator.
In the weekly berth planning, the liner shipping companies update the estimated arrival
times and departure times of vessels. The MCT operator assigns a berthing position to each
vessel with approximate start and finish service times. Moreover, the marshaling yard
planning can be performed based on the assigned berthing positions for the arriving vessels.
As for the daily berth planning, the liner shipping companies are required to provide more
precise vessel arrival times and expected departure times to the MCT operator to avoid
potential delays in the vessel service. Based on the obtained information, the MCT operator
determines the start service times and finish service times of the arriving vessels as well as
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allocates the required handling equipment and resources. Considering the aforementioned
berth planning classifications, this study focuses on daily berth scheduling.

The exact optimization and metaheuristic algorithms can be used to solve the BSP.
However, the BSP literature shows that the exact optimization algorithms cannot solve the
realistic-size problem instances in a reasonable computational time (Ting et al., 2014;
Dulebenets et al., 2018). Therefore, the heuristic and metaheuristic algorithms have been
commonly adopted to tackle the realistic-size problem instances of BSPs (Bierwirth and
Meisel, 2015). In 1980s, island-based metaheuristic algorithms started receiving more
attention of the community (Cohoon et al., 1987). The population of candidate solutions to
the problem of interest, initialized in the island-based metaheuristic, is divided into several
sub-populations to establish a set of islands. Each island is assigned a separate
metaheuristic algorithm (Alba and Tomassini, 2002). In the canonical island-based
metaheuristic algorithms, all the islands are searched using the same type of metaheuristic
algorithm (Alba and Tomassini, 2002). Island-based metaheuristics allow maintaining the
population diversity as different islands explore various domains of the search space (Eiben
and Smith, 2003), which further allows avoiding a premature convergence. However, none of
the previous BSP studies applied island-based metaheuristic algorithms, despite their
proven effectiveness for various combinatorial optimization problems.

In this study, an innovative universal island-based metaheuristic algorithm (UIMA) is
developed, in which the population is divided into four sub-populations (which are also
referred to as “islands”). Unlike the canonical island-based algorithms that execute the same
metaheuristic on each island, four different population-based metaheuristics are adopted
within the developed algorithm to search the islands, including the following:

(1) evolutionary algorithm (EA);
(2) particle swarm optimization (PSO);
(3) estimation of distribution algorithm (EDA); and
(4) differential evolution (DE).

Each algorithm deploys a unique set of operators, which is expected to facilitate the search
process for superior solutions and improve the quality of berth schedules. The developed
solution algorithm is compared against the alternative algorithms in terms of different
performance indicators. The remainder of the manuscript includes the following sections. A
concise review of the studies related to the BSP and island-based algorithms is presented in
the second section. A description of the problem of interest and the developed mathematical
model is provided in the third and fourth sections, respectively. The fifth section describes
the proposed UIMA. The conducted numerical experiments are summarized in the sixth
section. The last section presents the conclusions and future extensions of this study.

2. Review of related studies
Bierwirth and Meisel (2015) conducted a comprehensive literature survey, which covers the
studies related to berth allocation, quay crane assignment, and quay crane scheduling
problems. Carlo et al. (2015) also published a survey study, covering the studies related to
the seaside MCT operations. The literature review under this study will focus on two study
groups:

(1) some of the recent BSP studies published after 2015; and
(2) the representative studies that relied on island-based algorithms.
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Moreover, this section presents the literature summary and contributions of this study to the
state-of-the-art.

2.1 Berth scheduling problem literature
Hsu (2016) developed a model for a simultaneous optimization of berth allocation and quay
crane assignment. A Hybrid PSO was combined with an event-based heuristic to solve the
formulated problem. The conducted numerical experiments showed that the developed
solution approach outperformed a canonical EA and a Hybrid EA in terms of the objective
function values. Mauri et al. (2016) proposed a BSP formulation and considered both
continuous and discrete berthing layouts. The problem of interest was solved by an
Adaptive Large Neighborhood Search. The capability of the proposed algorithm to return
high-quality solutions was demonstrated throughout the conducted numerical experiments.
Tsai et al. (2016) proposed a mathematical model for a BSP, aiming to reduce the total
waiting time of vessels. The considered problem was solved using a Wharf-based genetic
algorithm (GA). The results showed a superior performance of the proposed algorithm
against three other algorithms in terms of the objective function values and computational
time.

Dulebenets et al. (2017) developed a mixed-integer mathematical model to minimize the
total service cost of the arriving vessels, which also included the total carbon dioxide
emission cost. The developed mathematical model was solved using a Hybrid EA. The
computational experiments proved that consideration of the emission cost could influence
the berth scheduling plans. Dulebenets (2017) developed a berth scheduling model to
minimize the total service cost of vessels. A Memetic Algorithm with a deterministic
parameter control was presented as a solution approach for the developed optimization
model. The results showcased that the proposed algorithm was able to provide promising
solutions in a reasonable computational time. Venturini et al. (2017) considered a
collaborative relationship between the MCTs and the liner shipping companies. The speed
of vessels was optimized at all the sailing legs. CPLEX was adopted to solve the developed
mathematical model. The results showed that the computational time of the proposed
solution approach was affected with the problem size.

Li et al. (2017) considered a multi-objective coordinated berth and quay crane scheduling
problem, which aimed to minimize the port time of the arriving vessels and the additional
trucking distance. A Chaos Cloud Particle Swarm Algorithm was developed for solving the
proposed model. The results verified that the proposed solution approach could greatly
decrease both trucking distance and port time of vessels. Zhen et al. (2017) conducted a
study for an operational-level berth allocation and quay crane assignment problem,
constrained by the tidal patterns and the channel flow control. The initially developed
mathematical model was reformulated based on a set partitioning approach. A Column
Generation approach was adopted to solve the formulated problem. The results showed the
capability of the proposed approach to solve the real-world problem instances with up to 80
vessels, 40 berthing positions, and 120 quay cranes within an hour. Jiao et al. (2018)
proposed an integrated berth allocation and time-variant quay crane scheduling problem,
considering the tidal effects in the approach channel. The objective minimized the total
vessel turnaround time. The computational experiments demonstrated the remarkable
effects of tidal patterns on the objective function values.

2.2 Literature on island-based algorithms
Island-based metaheuristic algorithms have been applied for a wide range of optimization
problems. For example, Lardeux and Goëffon (2010) developed a Dynamic Island-based EA
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Algorithm for combinatorial decision problems. In that study, the last migration impact was
taken into account to dynamically update the migration probabilities. The numerical
experiments showed efficiency of the proposed strategy for the 0/1 Knapsack problem and
the MAX-SAT problem. Gong and Fukunaga (2011) proposed a novel approach for
determining the values of algorithmic parameters within an Island-based GA. In that study,
instead of using a parameter tuning or a self-adaptive parameter control strategy,
parameters were statistically assigned random control parameter values. The numerical
experiments showed that the proposed approach could return the solutions, which were
competitive to a homogeneously distributed GA with the parameters that were tuned
specifically for each one of the benchmark problem instances. Osaba et al. (2013) focused on
different variations of the routing problem and used a Multi-Crossover and Adaptive Island-
based GA as a solution approach. In the developed algorithm, each one of the sub-
populations was assigned a specific crossover type, which could be switched based on its
efficiency.

Ammi and Chikhi (2015) proposed a model for a capacitated vehicle routing problem
(CVRP). The study aimed to minimize the cost of a reliable product distribution over a large
distribution network. An island-based metaheuristic algorithm was developed to solve the
problem. A GA and an Ant Colony Optimization Algorithm were adopted to cover different
areas of the search space throughout the search process. The numerical experiments,
conducted for a large-scale CVRP, showed superiority of the solutions, provided by the
developed algorithm, as compared to the well-known benchmark values that had been used
in the CVRP literature. Kurdi (2015) developed a new Hybrid Island-based GA for a job shop
scheduling problem with the overall objective of minimizing the makespan. A naturally
inspired self-adaptation phase strategy was embedded within the algorithm to improve
performance of the island-based algorithm. The considered numerical experiments
showcased efficiency of the proposed self-adaptation strategy in terms of the solution
quality. Al-Betar et al. (2015) evaluated performance of the Harmony Search Algorithm in an
island-based framework. The performance of the developed island-based algorithm was
evaluated for a group of benchmark functions, which had been previously used in the
literature. It was found that application of Harmony Search improved effectiveness of the
algorithm.

Magalhaes et al. (2015) studied 10 strategies that could be used to conduct migration of
individuals between the islands in the island-based metaheuristic algorithm. The islands
were searched by a DE and a GA. A total of 30 different scalable problem instances were
developed to perform the numerical experiments. Advantages and disadvantages of the
developed strategies were evaluated and discussed based on the quality of results. Brester
et al. (2017) developed a decision support tool, aiming to assist with decision making in the
field of project management. The objectives of the study maximized the income and
minimized the risks that resulted from the decisions made by a given project manager.
Three different algorithms were adopted in that study, and various combinations of them
were considered to search the islands. All the developed combinations were evaluated in
terms of the objective function values as well as the computational time. The results
confirmed the efficiency of introducing the island-based framework.

2.3 Literature summary and contributions
Based on the conducted literature review, island-based metaheuristic algorithms have never
been used in the BSP literature so far (Bierwirth andMeisel, 2015), but have been found to be
efficient for various challenging decision problems. Given potential advantages of the
island-based framework, this study proposes a novel UIMA for the BSP, which executes
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four different population-based metaheuristic algorithms on its islands to search more
efficiently for promising solutions. Unlike typical island-based metaheuristic algorithms,
which use the same metaheuristic on different islands, the developed UIMA relies on four
different metaheuristics (EA, PSO, EDA, and DE) to effectively search the islands by taking
unique advantages of these metaheuristics.

3. Problem description
In this section of the manuscript, the BSP, which is investigated in this study, is described in
detail. Several types of MCT berthing layouts have been defined in the BSP literature,
including discrete, continuous, indented, hybrid, and channel berthing layouts (Bierwirth
and Meisel, 2015). In this study, a discrete berthing layout was adopted, based on which the
wharf is divided into a set of berthing positions (B = {1, . . ., n}), and each one of them can
serve one vessel at a time. Figure 1 illustrates the berthing layout of the MCT, where a group
of vessels (V = {1, . . ., m}) are served at n discrete berthing positions. The vessel arrival
patterns in BSPs can be categorized into dynamic and static. The former arrival pattern was
adopted in this study. Based on the dynamic vessel arrival case, the vessels have not arrived
at the MCT yet, but the liner shipping companies have already informed the MCT operator
regarding the expected vessel arrival times. Let T = {1, . . ., p} be the set of discrete periods
in the considered planning horizon, and u a

v ; v 2 V (period) be the period when vessel v
arrives at the MCT. Once a vessel is getting close to the MCT, a number of tug boats tow the
vessel to the assigned berthing position. If the assigned berthing position cannot serve the
vessel immediately upon its arrival, it will be towed to the waiting area of the MCT. Let
hwtv ; v 2 V (periods) be the number of periods that vessel v should wait for service (periods),
and u ber

b ; b 2 B (period) be the period when berthing position b is available for the first time
in the considered planning horizon. The service of a given vessel cannot start before its
assigned berthing position becomes available for the first time in the planning horizon.

The MCT operator prepares a berth scheduling plan, in which each one of the vessels is
assigned to one of the available berthing positions, in advance. The berthing position,
assigned based on a preliminary berth scheduling plan, is referred to as a “preferred
berthing position”, where a given vessel receives the highest handling rate (i.e. the shortest
handling time). In fact, the preferred berthing position is the closest berthing position to the
storage area, which was assigned for the containers to be delivered by the given vessel in the
marshaling yard (Bierwirth and Meisel, 2015). However, the assigned berthing position may

Figure 1.
TheMCT berthing

layout
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not necessarily be the same as the preferred one (e.g. a vessel can be re-assigned to another
berthing position to reduce its waiting time). The handling time of each vessel can be

calculated using this relationship (Dulebenets et al., 2018):u ht
vb ¼ gu ht

v � 1þ j � abs Bpr
v �

��
Bas
v ÞÞ 8v 2 V ; b 2 B, where u ht

vb; v 2 V ; b 2 B (periods) are the periods required for

handling vessel v at berthing position b; fu ht
v ; v 2 V (periods) are the periods required for

handling vessel v at its preferred berthing position; Bpr
v ; v 2 V is the index for the preferred

berthing position of vessel v; Bas
v ; v 2 V is the index for the berthing position assigned to

vessel v; and j is a coefficient of the handling time increase (per cent) due to diversion of
vessel v from its preferred berthing position to the other MCT berthing position (assumed to
be 3 per cent in this study).

The BSP spatial requirements are also modeled throughout this study. In detail, the
length of each vessel (Lves

v ; v 2 V– feet) and the draft of each vessel (Dves
v ; v 2 V – feet)

should be compatible with the length of the assigned berthing position (Lber
b ; b 2 B – feet)

and the depth of the assigned berthing position (Dber
b ; b 2 B – feet), considering a horizontal

clearance (Phor
v ; v 2 V – feet) and a vertical clearance (Pver

v ; v 2 V – feet), respectively. A
specific departure time is assigned to each one of the arriving vessels and is determined
based on the agreements between the liner shipping companies and the MCT operator. Let
u d
v ; v 2 V (period) be the negotiated departure period for vessel v. If a given vessel departs

the MCT later than the pre-determined departure period, the entire voyage of the vessel can
be interrupted as the vessel would arrive at the next ports of call with a delay. This study
assumes that the MCT operator will incur a monetary penalty for the late departures of
vessels. The MCT operator is expected to allocate adequate handling equipment (e.g.
straddle carriers, yard trucks, automated lifting vehicles, automated guided vehicles) and
sufficient storage area in the marshaling yard for each one of the vessels to be able to have
all the vessels served based on their specific arrival times and negotiated departure times.
Some of the BSP studies modeled uncertain vessel arrival times and/or handling times
(Bierwirth andMeisel, 2015), while this study assumed the vessel arrival and handling times
to be deterministic. The considered BSP aims to minimize the total vessel waiting cost, the
total vessel handling cost, and the total vessel late departure cost.

4. Mathematical formulation of the optimization model
Under this section of the manuscript, the mathematical model, developed for the Spatially
Constrained BSP (SCBSP), is described in a comprehensive manner. A mixed-integer linear
mathematical formulation was adopted for the considered BSP. In Table I, the nomenclature,
which will be used from now on, is presented.

Equation (1) represents the objective function, which was adopted for the SCBSP
mathematical model. This equation minimizes the summation of the total waiting cost, the
total handling cost, and the total late departure cost of the arriving vessels at theMCT.

minZ ¼
X
v2V

wwt
v hwtv

� �
þ
X
v2V

X
b2B

X
t2T

w ht
v u

ht
vbxvbt

� �
þ
X
v2V

w lt
vh

lt
v

� �" #
(1)

A group of constraint sets are defined in the optimization model, which correspond to real-
world operational features of the problem studied herein. Constraint set (2) guarantees that
each vessel will be assigned to a berthing position just once during the considered planning
horizon.
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Model component
Type Nomenclature Description

Sets V = {1, . . .,m} the set of arriving vessels at the MCT (vessels)
B = (1, . . ., n} the set of available berthing positions at the MCT (berthing

positions)
T = {1, . . ., p) the set of discrete periods (periods)

Decision
Variables

xvbt, v [ V,
b [ B, t [ T

=1 if vessel v is assigned for service at berthing position b at period t
(=0 otherwise)

Auxiliary
Variables

hitvbt ; v 2 V ;
b 2 B; t 2 T

the number of idling periods for berthing position b between service
of vessel v and its immediate predecessor served during period (t – 1)
(periods)

qvbt, v [ V,

b [ B, t [ T

=1 if vessel v leaves berthing position b at period t (=0 otherwise)

hstv ; v 2 V the start service period for vessel v (period)

hftv ; v 2 V the finish service period for vessel v (period)
hwtv ; v 2 V the number of periods that vessel v should wait for service (periods)
hltv ; v 2 V the number of periods that vessel v leaves later than the negotiated

departure period (periods)
Parameters m the total number of arriving vessels at the MCT to be served

(vessels)
n the total number of available berthing positions at the MCT

(berthing positions)
p the total number of periods in the planning horizon (periods)
u a
v ; v 2 V the period when vessel v arrives at the MCT (period)

u ber
b ; b 2 B the period when berthing position b is available for the first time in

the considered planning horizon (period)fu ht
v ; v 2 V the periods required for handling vessel v at its preferred berthing

position (periods)
u ht
vb; v 2 V ; b 2 B the periods required for handling vessel v at berthing position b

(periods)
u d
v ; v 2 V the negotiated departure period for vessel v (period)

Dves
v ; v 2 V the draft of vessel v (feet)

Dber
b ; b 2 B the depth of berthing position b (feet)

Lves
v ; v 2 V the length of vessel v (feet)

Lber
b ; b 2 B the length of berthing position b (feet)

Pver
v ; v 2 V the minimum vertical clearance for vessel v (feet)

(continued )

Table I.
Nomenclature

adopted for the
mathematical model
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X
b2B

X
t2T

xvbt ¼ 1 8v 2 V (2)

Constraint set (3) prevents assigning more than one vessel to the same berthing position at
the same period. X

v2V
xvbt # 1 8b 2 B; t 2 T (3)

Constraint set (4) guarantees that the start service period for a vessel should be greater than
the period when the assigned berthing position is available for service.X

b2B

X
t2T

u ber
b xvbt

� �
# hstv 8v 2 V (4)

Constraint set (5) ensures to set the start service period for a vessel to be greater than its
arrival period at theMCT.

u ber
b xvbt þ

X
v0 2V :v0 6¼v

X
t0 2T:t0<t

u ht
v0 bxv0 bt0 þ hitv0 bt0

� �
þ hitvbt � u a

vxvbt 8v 2 V ; b 2 B; t 2 T

(5)

Constraint set (6) calculates the start service period for each arriving vessel at theMCT.

hstv � u ber
b xvbt þ

X
v0 2V :v0 6¼v

X
t0 2T:t0<t

u ht
v0 bxv0 bt0 þ hitv0 bt0

� �
þ hitvbt � Y 1� xvbtð Þ 8v 2 V ;

b 2 B; t 2 T (6)

Constraint set (7) shows that if the service of a vessel at the assigned berthing position starts
at period hstv , the vessel must leave that berthing position at period hstv þ u ht

vb.

xvb hstvð Þ ¼ qvb hstv þu ht
vbð Þ 8v 2 V ; b 2 B; t 2 T (7)

Model component
Type Nomenclature Description

Phor
v ; v 2 V the minimum horizontal clearance for vessel v (feet)

wwt
v ; v 2 V the unit waiting cost component for vessel v (US$/period)

w ht
v ; v 2 V the unit handling cost component for vessel v (US$/period)

w lt
v ; v 2 V the unit late departure cost component for vessel v (US$/period)

Y a large positive numberTable I.
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The horizontal and vertical spatial requirements are imposed by constraint sets (8) and
(9), respectively. Specifically, the length of the assigned berthing position should be
longer than the vessel length plus the considered minimum horizontal clearance due to
safety issues. Moreover, the depth of the assigned berthing position should be greater
than the summation of the draft of the vessel and the considered minimum vertical
clearance.

Lves
v þ Phor

v

� �
xvbt #Lber

b 8v 2 V ; b 2 B; t 2 T (8)

Dves
v þ Pver

v

� �
xvbt #Dber

b 8v 2 V ; b 2 B; t 2 T (9)

Constraint set (10) estimates the waiting periods for each arriving vessel at theMCT.

hwtv � hstv � u a
v 8v 2 V (10)

Constraint set (11) calculates the finish service period for each arriving vessel at theMCT.

hftv ¼ hstv þ
X
b2B

X
t2T

u ht
vbxvbt

� �
8v 2 V (11)

Constraint set (12) computes the late departure periods for each arriving vessel at theMCT.

hltv � hftv � u d
v 8v 2 V (12)

The nature of all the decision variables, auxiliary variables, and parameters of the SCBSP
mathematical model is defined in constraint sets (13) to (15).

xvbt;qvbt 2 B 8v 2 V ; b 2 B; t 2 T (13)

hitvbt; h
st
v ; h

ft
v ; h

wt
v ; hltv ;m; n; p; u a

v ; u ber
b ; fu ht

v ; u
ht
vb; u d

v 2 N 8v 2 V ; b 2 B; t 2 T

(14)

Dves
v ; Dber

v ; Lves
v ; Lber

v ; Pver
v ;Phor

v ; wwt
v ; w ht

v ; w lt
v ; Y 2 Rþ 8v 2 V (15)

5. Solution strategy
In this study, the developed SCBSP mathematical model was solved using the proposed
UIMA. The key steps of UIMA are illustrated in Figure 2. The data, required for the
execution of UIMA, are loaded in the first step. Then, the initial population is generated
based on the two strategies:

(1) a First Come First Served with Spatial Requirements (FCFS-SR) heuristic for the
first half of the whole population; and

(2) the next half of the population is generated randomly (more details can be found in
Dulebenets et al., 2018).
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Each solution in the population is checked by a repairing operator to be repaired in case of
infeasibility. Then, the generated initial population is split into four sub-populations. The
first half of each sub-population is selected from the solutions generated using FCFS-SR, and
the next half is chosen from the randomly generated solutions. Each island is assigned one
of the generated sub-populations. Afterwards, UIMA starts the execution of all four
metaheuristics at the same time. Then, the defined migration criterion is checked, and in
case of satisfaction, the migration process is conducted. Throughout the migration process,
a specific number of solutions (called “immigrants”), selected from each island, are
exchanged between all the possible pairs of the islands. In the next step, the stopping
criterion is checked, and in case of satisfaction, the algorithm returns the best solution
discovered over all the islands; otherwise, the four developed algorithms will continue the
search on their specific islands for another iteration.

A population in UIMA includes a number of candidate solutions to the SCBSP
mathematical model. Figure 3 illustrates a two-dimensional solution (as it consists of two
rows) adopted in this study. The row at the top includes the indices of vessels, and the lower
row accommodates the berthing positions, where the vessels at the row above are assigned

Figure 2.
The basic UIMA
steps

Start

Stopping criterion
is met?

Input Data

EDA

End

YES

NO

DEEA PSO

Exchange
Immigrants

Migration criterion 
is met?

YES

NO

Population 
Initialization

Sub-population 
Assignment

Return the best 
solution

Population 
Repairing

Figure 3.
The solution
representation
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to. For example, vessels “7” and “5” are assigned for service at berthing positions “2” and
“1”, respectively.

5.1 The topology of universal island-based algorithm
As discussed earlier, UIMA splits the population into four sub-populations, and each sub-
population is assigned to one of the UIMA islands. After that, each island is searched using
one of the population-based metaheuristic algorithms, which have been widely used in the
BSP and EA literature (i.e. EA, PSO, EDA and DE). This study refers to Dulebenets et al.
(2018), Ting et al. (2014), Izquierdo et al. (2012), and Arabani et al. (2011) for a detailed
description of the EA, PSO, EDA, and DE algorithms, respectively. The UIMA topology is
illustrated in Figure 4. A particular area of the search space (i.e. island) is explored and
exploited by one of the adopted algorithms independently. The UIMA algorithm allows
migration of individuals between the islands once a pre-defined migration criterion is
satisfied (i.e. the islands are not fully isolated). While the canonical island-based
metaheuristics execute the same type of metaheuristic algorithm on each one of the islands
(Alba and Tomassini, 2002), UIMA deploys various types of metaheuristics for different
islands that rely on different operators to explore and exploit the search space.

In detail, each metaheuristic algorithm plays a specific role in UIMA, given its unique
features. The EA and DE algorithms are founded based on the principles of natural selection
and survival of the fittest. The EA and DE algorithms select a specific number of solutions
using the selection operators. The selected solutions are used by the crossover and mutation
operators to generate the new solutions (Eiben and Smith, 2003). Crossover is used for
exploration of various domains of the search space, while mutation is used to exploit the
promising domains for superior solutions. The EA and DE algorithms are controllable
search tools in the UIMA algorithm, as they can discover new areas in the search space by
adopting the appropriate values for the crossover and mutation probabilities. The EA and
DE algorithms have been widely used in the BSP literature (Liu et al., 2016; S� ahin and
Kuvvetli, 2016; Tsai et al., 2016; Dulebenets et al., 2018).

On the other hand, the PSO algorithm is recognized as a swarm-intelligence algorithm,
which plays the role of a fast local search tool in UIMA (Kennedy and Eberhart, 1997). The
PSO algorithm is inspired by flocking behavior of birds and schooling behavior of fish (Ting
et al., 2014; Arabani et al., 2011). The population in PSO is composed of a group of particles.
A position and a velocity are assigned to each particle. These two features of particles
enable them to move across the search space and discover the new areas. Ting et al. (2014)
andWang et al. (2012) adopted a PSO to solve BSPs. While the EA, PSO, and DE algorithms
stochastically explore and exploit the search space, the EDA algorithm deploys statistical
tools throughout the search process (Izquierdo et al., 2012). A number of studies on
scheduling problems used EDA as a solution methodology (Izquierdo et al., 2012). The
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metaheuristic algorithms, adopted for the UIMA islands, are further described in Sections
5.1.1-5.1.4 of the manuscript.

5.1.1 Evolutionary algorithm. The EAs, classified as population-based metaheuristic
algorithms, are inspired by the principles of nature and evolve based on the survival of the
fittest individual concept (Eiben and Smith, 2003). In EAs, a specific number of solutions,
which is called a “population”, can be generated randomly or considering the problem-
specific properties. The fitness values of the generated solutions are evaluated based on the
values of the objective function, adopted for the problem. The parent chromosomes are
selected from the population (typically, based on their fitness) and undergo the crossover
and mutation operations to produce and mutate the offspring chromosomes. The offspring
chromosomes are further evaluated, and only a portion of them will be moved to the next
generation (typically, based on their fitness). In general, the EA algorithm converges once a
certain stopping criterion is met (e.g. maximum number of generations). In this study, the
EA algorithm will be executed on one of the UIMA islands. Therefore, the EA stopping
criterion will be defined by UIMA (similar to PSO, EDA, and DE, which will be executed on
the other UIMA islands). Figure 5 presents the main EA steps to be performed on a given
island in each UIMA iteration.

In step 0 of Figure 5, the data structure, required for storing the EA sub-population
fitness values, is initialized. The fitness values of the chromosomes, assigned to the EA sub-
population, are calculated in step 1 using equation (1) – see Section 4 of the manuscript. A
specific number of chromosomes (equal to the sub-population size) are selected as parents in
step 2. The crossover and mutation operators are applied to the selected parents in steps 3
and 4, respectively, to produce and mutate the offspring. The newly generated offspring are
checked in step 5 to be repaired in case of infeasibility. The fitness value of each offspring is
calculated in step 6. After that, another selection operator is applied to the generated and
repaired offspring to establish a new EA sub-population for the next iteration of UIMA (step
7). The EA sub-population, selected for the next iteration of UIMA, is updated by applying
the elitism strategy in step 8. In step 9, the EA sub-population is returned to UIMA. The
Stochastic Universal Sampling and Binary Tournament selection operators were adopted to
identify the parent and offspring chromosomes, respectively. The order crossover and swap
mutation operators were applied to produce and mutate the offspring chromosomes,
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respectively. For a detailed description of the adopted selection, crossover, and mutation
operators this study refers to Eiben and Smith (2003) (Figure 5).

5.1.2 Particle swarm optimization. The PSO algorithm is another population-based
metaheuristic, introduced by Kennedy and Eberhart (1997). The PSO algorithm is inspired
by schooling behavior of fish and flocking behavior of birds. In detail, when a given particle
is moving in a group of particles (a bird in a flock), its move is remarkably affected by the
distances between that particle and the other particles. A position and a velocity are the two
features of a given particle, which have the major effects on the aforementioned distances.
Two factors are defined in PSO to adjust the position of each particle:

(1) pBest – the best position that a particle has experienced so far throughout the
search process; and

(2) gBest – the best position achieved so far by all the particles.

The values of pBest and gBest are updated throughout the search process. Figure 6 presents
the main PSO steps to be performed on a given island in each UIMA iteration.

In step 0 of Figure 6, the data structure, required for storing the PSO sub-population
fitness values, is initialized. In step 1, the solutions with the integer-coded representation,
adopted within UIMA, are mapped to the solutions with the real-coded representation,
which will be further used by PSO. The fitness values of the particles, composing the PSO
sub-population, are calculated in step 2 using equation (1). The two key PSO parameters (i.e.
pBest and gBest) are recorded in steps 3 and 4. The current velocity and position of each
particle are retrieved in step 5. The velocity and the position of each particle are updated in
steps 6 and 7, respectively. The PSO sub-population is updated in step 8. The newly
generated particles are checked in step 9 to be repaired in case of infeasibility. The fitness
values of the newly generated particles are calculated in step 10. In step 11, the solutions
with the real-coded representation, used by PSO, are mapped back to the solutions with the
integer-coded representation. In step 12, the PSO sub-population is returned to UIMA.
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Since the PSO algorithm conducts operations with the real-coded solutions, the solutions,
provided by UIMA that have the integer-coded representation, should be mapped to the
solutions with the real-coded representation. Figure 7 illustrates a particle representation,
adopted within PSO (similar to Ting et al., 2014). There are 7 arriving vessels in Figure 7,
which should be served at two berthing positions. To encode the berthing positions in the
lower row, a group of real numbers are randomly generated in the range [0, 2]. The rounded
integer part of the real number in the lower row stands for the berthing position that the
vessel in the upper row is assigned to. The fractional part determines the service order of
vessels at each berthing position. In particular, vessels “1”, “6”, and “5” should have service
orders “2”, “1”, and “3” at berthing position “1” (i.e. the associated fractional parts are sorted
in the ascending order).

The velocity and the position of each particle are updated (steps 6 and 7 of Figure 6)
based on the following two equations (Arabani et al., 2011; Ting et al., 2014):

Vnew
p ¼ W � Vold

p þ C1 � R1 � pBestp � Pold
p

� �
þ C2 � R2 � gBest � Pold

p

� �
(16)

Pnew
p ¼ Pold

p þ Vnew
p (17)

where: Vnew
p and Vold

p are the new and current velocities of particle p, respectively; Pold
p and

Pnew
p are the new and current positions of particle p, respectively;W is the inertia weight (the

value of the inertia weight generally varies from 0.50 to 1.00 – Ting et al., 2014); C1 and C2
are the cognition and social components, respectively; R1 and R2 are two random numbers in
the range [0, 1]; pBestp is the best position that particle p has experienced so far throughout
the search process; gBest is the best position achieved so far by all the particles.

5.1.3 Estimation of distribution algorithm. The EDA population-based metaheuristic
was developed by Larrañaga and Lozano (2001). Unlike the other three algorithms that were
adopted in this study for the UIMA islands (i.e. EA, PSO, and DE), EDA uses statistical tools
(i.e. a probability distribution) to generate new solutions. On the other hand, EA, PSO and
DE generate new solutions stochastically (i.e. using stochastic operators for crossover and
mutation or stochastic operators for updating velocities and positions of particles). The
statistical information is collected from a group of promising solutions in the population
(Izquierdo et al., 2012). In EDA, a probability matrix should be established, which includes
the probability of assigning a vessel to each one of the available berthing positions in the
developed SCBSP mathematical model. Figure 8 presents the main EDA steps to be
performed on a given island in each UIMA iteration.

In step 0 of Figure 8, the data structure, required for storing the EDA sub-population
fitness values, is initialized. The fitness values of the solutions, assigned to the EDA sub-
population, are calculated in step 1 using equation (1). The probability matrix is updated
and shaken in steps 2 and 3, respectively. A portion of the elite solutions is transferred from
the previous EDA sub-population into the current EDA sub-population in step 4. In step 5,
the remainder of the population is filled based on the probability matrix. The newly
generated solutions are checked in step 6 to be repaired in case of infeasibility. The fitness

Figure 7.
The PSO particle
representation

MABR
5,1

44



value of each solution is calculated in step 7. In step 8, the EDA sub-population is returned to
UIMA. The EDA probability matrix can be represented using matrix (18), which contains
the number of arriving vessels (m) and the number of available berthing positions (n) in
generation g – i.e. m � n matrix with m rows and n columns. More specifically, Pmn (g)
denotes the probability of assigning vessel m to berthing position n in generation g. Note
that the summation of probabilities of assigning a given vessel to the available berthing
positions should be equal to 1 (Izquierdo et al., 2012).

P gð Þ ¼
P11 gð Þ � � � P1n gð Þ

..

. . .
. ..

.

Pm1 gð Þ � � � Pmn gð Þ

2664
3775 (18)

The EDA probability matrix is updated in each generation in the following manner. First,
the fittest solutions from the current sub-population are selected. The number of the fittest
solutions will be set to round(c ·|EDASubPop|) – i.e. c percent of the EDA sub-population.
The selected solutions will be further used to update the probability matrix based on the
following equation:

Pmn gð Þ ¼ Nummn gð ÞX
k2BNummk gð Þ

(19)

where: Nummn (g) is the number of times vesselm has been assigned to berthing position n
in the solutions selected in generation g; and the denominator represents the number of
times vesselm has been assigned to all the available berthing positions in generation g.

The shaking operator is implemented in EDA (step 3) to increase the population
diversity, which further facilitates exploration and exploitation in the search space and
decreases the probability of the premature convergence. The shaking operator selects a
specific number of vessels (Numvs < m). Then, the rows, corresponding to the selected
vessels in the probability matrix, are independently perturbed (i.e. the probability values of
assigning a vessel to different berthing positions are exchanged randomly). The elitism
operator is implemented in each iteration of EDA (step 4) to generate a portion of the new
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sub-population. In particular, the new sub-population is composed of round(c ·|
EDASubPop|) solutions – i.e. c percent of the fittest solutions from the EDA sub-
population in the previous generation. Function PrbExplore will be used to fill out the
remainder of the new EDA sub-population. Figure 9 illustrates the process of assigning a
vessel to a berthing position by function PrbExplore. First of all, the corresponding row for a
given vessel in the probability set is considered. As it can be observed, there are 7 berthing
positions for the case, which is considered in Figure 9. Then, the list of berthing positions is
sorted based on the assignment probability in the ascending order. The probabilities are
cumulatively summed up. A random number is generated in the range [0, 1] (e.g. 0.48).
Berthing position “1” is selected, as 0.48 is less than 0.56 and greater than 0.32. The same
procedure is repeated for the other vessels as well.

5.1.4 Differential evolution. As indicated earlier, DE has some similarities with EAs, as it
is inspired by the principles of nature and evolves based on the survival of the fittest
individual concept. The DE algorithm was introduced by Storn and Price (1997) for the first
time. Similar to EAs, DE relies on the crossover and mutation operators to perform the
search process. However, unlike typical EAs that can work with both integer- and real-coded
chromosomes, DE particularly relies on real-coded chromosomes (that are also called as
“target vectors” – Arabani et al., 2011). Figure 10 presents the main DE steps to be
performed on a given island in each UIMA iteration.

In step 0 of Figure 10, the data structures, required for storing the DE sub-population
fitness values, are initialized. In step 1, the solutions with the integer-coded representation,
adopted within UIMA, are mapped to the solutions with the real-coded representation,
which will be further used by DE. The fitness values of the target vectors, composing the DE
sub-population, are calculated in step 2 using equation (1). The mutation and crossover
operators are applied to the target vectors in steps 3 and 4, respectively, to produce the trial
vectors. The newly generated trial vectors are checked in step 5 to be repaired in case of
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infeasibility. The fitness value of each trial vector is calculated in step 6. After that, the
selection operator is applied to the target vectors and the trial vectors to establish a new DE
sub-population for the next iteration of UIMA (step 7). The DE sub-population, selected for
the next iteration of UIMA, is updated by applying the elitism strategy in step 8. In step 9,
the solutions with the real-coded representation, used by DE, are mapped back to the
solutions with the integer-coded representation. In step 10, the DE sub-population is
returned to UIMA.

Since the DE algorithm conducts operations with the real-coded solutions, the
solutions, provided by UIMA that have the integer-coded representation, should be
mapped to the solutions with the real-coded representation. In this study, Relative
Position Indexing (RPI) will be used to map the integer-coded solutions into the real-
coded solutions for the DE algorithm (Lichtblau, 2002). In Figure 11, the integer-coded
vectors are mapped into the real-coded vectors using the RPI-format based on the
following relationship: RPIinx = ICinx/MAXIC, where: RPIinx is the index of the vessel or
the berthing position in the RPI-format; ICinx is the integer-coded index of the vessel or
the berthing position; andMAXIC is the maximum value of the integer-coded vector for
the vessels or the berthing positions. In the presented example, the RPI value for vessel
“7” was estimated as 7/7 = 1.00 (“7” is the maximum value of the integer-coded vector,
representing the arriving vessels), while the RPI value for berthing position “1” was
estimated as 1/2 = 0.50 (“2” is the maximum value of the integer-coded vector,
representing the available berthing positions). For a detailed description of typical
mutation, crossover, and selection operators, which were adopted within the DE
algorithm, this study refers to Arabani et al. (2011).

Figure 11.
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5.2 The major parameters of universal island-based algorithm
In addition to typical algorithmic parameters, which are used within the population-based
metaheuristic algorithms that were adopted to search the UIMA islands, there are four other
parameters/procedures, required to perform migration in island-based metaheuristic
algorithms. One of the most important parameters is the frequency of migration, which
determines how often the islands exchange the solutions between each other. The frequency
of migration directly impacts performance of island-based metaheuristic algorithms (Alba
and Tomassini, 2002). Moreover, there are three other UIMA parameters/procedures that
should be properly set, including the following (Eiben and Smith, 2003):

(1) the number of immigrants;
(2) the individuals, which should migrate (i.e., immigrant selection); and
(3) the individuals, which must be removed on the destination island to make enough

room for the migrating individuals.

A detailed description of the strategies adopted for the aforementioned parameters is
provided in Sections 5.2.1-5.2.4 of the manuscript.

5.2.1 The frequency of migration. A deterministic approach is widely used for setting the
frequency of migration (Eiben and Smith, 2003). The deterministic approach assumes that
the migration process is implemented based on a specific number of algorithmic iterations/
generations (a pre-determined number of fitness function evaluations or a target
computational time can be used as deterministic migration criteria as well). However, if the
migration is implemented too frequently, the population diversity decreases. On the other
hand, if the migration occurs very few times throughout the algorithmic run, some sub-
populations may converge to a local optimum and negatively affect efficiency of all the
conducted computational efforts. To address the aforementioned drawbacks, some studies
relied on an adaptive strategy to set the migration frequency (Kurdi, 2015). An adaptive
approach was also used in this study as well, where the migration process was conducted
when the improvements in the objective function values on two or more than two islands
were less than l = 0.1 per cent (determined based on the conducted parameter tuning
analysis – see Section 6.2 of the manuscript) as compared to the objective function values in
the first iteration after the previous migration.

5.2.2 The number of immigrants. The number of immigrants (Nimg) is the number of
individuals that should migrate from one island to the other ones. The number of
immigrants should be determined properly, as a high number of immigrants may lead to a
quick convergence to a similar solution on all the islands. Therefore, it is recommended to
exchange a few solutions between the islands (Eiben and Smith, 2003). The number of
immigrants in this study was set to Nimg = 4 individuals (determined based on the
conducted parameter tuning analysis – see Section 6.2 of the manuscript) for each migration
process within UIMA.

5.2.3 Selection of the migrating individuals. Selection of the migrating individuals can be
conducted based on different strategies (Eiben and Smith, 2003). In this study, a Roulette
Wheel Selection operator was used to perform the immigrant selection. In the Roulette
Wheel Selection, a selection probability is assigned to each one of the solutions in the sub-
population [calculated using equation (20)]. The selection probability has a reverse
relationship with the objective function value of a given solution (as the SCBSP
mathematical model aims to minimize the objective function value, i.e. minimize the total
vessel service cost).
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Pr i ¼ 1=Z iX
j2subpop1=Z j

(20)

where Pri is the selection probability of solution i; and Zi is the objective function value,
associated with solution i.

The probabilities, estimated for all the solutions, are cumulatively summed up. Each one
of the solutions is allocated a portion of the range [0, 1]. A random number in the range [0, 1]
is generated, and the corresponding solution that belongs to a portion of the roulette wheel is
identified and chosen as an immigrant. This process is repeated until the required number of
immigrants are selected (Eiben and Smith, 2003).

5.2.4 Removal of the individuals. Tomake enough room on the destination islands for the
migrating solutions, a strategy should be developed to select a specific number of
individuals for removal on the destination islands. A random selection of the solutions to be
removed may lead to some negative consequences (e.g. a loss of some promising solutions
on the destination islands). To avoid any potential negative effects on the algorithmic
performance, an alternative Roulette Wheel Selection procedure was developed in this study.
To select low-quality solutions for removal, the selection probability of the solutions is
calculated using equation (21).

Pr i ¼ Z iX
j2subpopZ j

(21)

Equation (21) was developed by making some revisions in equation (20). Application of
equation (21) increases the probability of selecting less promising solutions for removal
on the destination islands. To select a specific number of solutions for removal, all the
steps that were required for the immigrant selection should be conducted in the same
way (except the removal probability estimations for the solutions on the destination
islands).

6. Numerical experiments
In this section of the manuscript, a detailed evaluation of the developed UIMA algorithm
is conducted. UIMA will be compared to the EA, PSO, EDA, and DE algorithms, which
are executed separately (i.e. without using an island concept). Moreover, the developed
SCBSP mathematical model will be solved using a group of single-solution-based
metaheuristic algorithms, which have been widely used in the BSP literature, including
the following:

� variable neighborhood search – VNS;
� tabu search – TS; and
� simulated annealing – SA.

A detailed description of the VNS, TS, and SA algorithms can be found in Hansen et al.
(2008), Cordeau et al. (2005), and Emde and Boysen (2016), respectively. The SCBSP
mathematical model will be encoded in the General Algebraic Modeling System (GAMS)
environment and solved using CPLEX to the global optimality. The global optima, obtained
by CPLEX, will be further used to assess the quality of solutions, obtained by UIMA and
other candidate metaheuristic algorithms (i.e. EA, PSO, EDA, DE, VNS, TS and SA).
Furthermore, the scope of numerical experiments includes the analysis of managerial
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insights, aiming to determine how changes in the unit cost components of the SCBSP
mathematical model (i.e. unit waiting cost, unit handling cost, and unit late departure cost)
could impact the berth scheduling decisions.

All the metaheuristic algorithms were encoded in the MATLAB 2016a environment in
this study, and the numerical experiments were conducted using an Alienware CPU with an
IntelVR CoreTM i7-7700K processor, 32 GB of RAM, and Windows 10 Operating System. The
following sections of the manuscript elaborate on the key steps of the conducted numerical
experiments, including:

� input data generation;
� algorithmic parameter tuning;
� solution quality evaluation against exact optimization;
� UIMA evaluation against the alternative metaheuristics; and
� managerial insights.

6.1. Input data generation
Table II provides detailed information regarding the values that were adopted for the
parameters of the developed SCBSP mathematical model. The adopted parameter
values were based on the BSP literature, freight operations literature and relevant
online sources (Imai et al., 2008; Mauri et al., 2016; Venturini et al., 2017; Dulebenets
et al., 2018; Eniram, 2019). The arrival pattern of vessels was modeled using an
exponential distribution with an average inter-arrival time of 2 periods. Each period
was assumed to be equal to 1 hour. The following types of vessels were modeled as a
part of this study:

� Panamax (draft: 41.0 feet, length: 820.2 feet);
� Panamax Max (draft: 41.0 feet, length: 951.4 feet);
� Post Panamax (draft: 42.7 feet, length: 935.0 feet);
� Post Panamax Plus (draft: 47.6 feet, length: 984.3 feet);
� New Panamax (draft: 49.9 feet, length: 1200.8 feet); and
� Triple E (draft: 50.9 feet, length: 1312.3 feet).

The handling time of the arriving vessels at their preferred berthing positions was assumed
to vary from 10 periods to 24 periods. The negotiated departure period for a given vessel
was set based on its vessel arrival period and the number of periods, required for service of
that vessel at its preferred berthing position.

The minimum vertical clearance for the arriving vessels was assumed to vary from
4 feet to 8 feet. The minimum horizontal clearance for the arriving vessels was
assumed to vary from 50 feet to 100 feet. The unit waiting cost of vessels ranged from
US$1,000/period to US$5,000/period. On the other hand, the unit handling cost of
vessels was assumed to vary from US$50,000/period to US$70,000/period. The unit
late departure cost of vessels ranged from US$5,000/period to US$10,000/period.
Based on the values adopted for the parameters of the SCBSP mathematical model,
the small-size problem instances (P1-P24 – with 5 to 20 vessels and 2 to 5 berthing
positions) and the large-size problem instances (P25-P48 – with 65 to 110 vessels and
4 to 10 berthing positions) were developed to conduct the numerical experiments.
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While the small-size problem instances were used to compare the candidate
metaheuristic algorithms against exact optimization, the large-size problem instances
were used for a detailed evaluation of UIMA against the alternative metaheuristics
based on different performance indicators.

Table II.
Data generation for

the SCBSP
mathematical model

Parameter Selected Value

Number of arriving vessels:m
(vessels)

Values are changed based on the problem instance

Number of available berthing
positions: n (berthing positions)

Values are changed based on the problem instance

Number of periods: p (periods) Values are changed based on the problem instance
Arrival time of vessel v at the
MCT: u a

v ; v 2 V (period)
u a
vþ1 ¼ roundþ u a

v þ Du
� � 8v 2 V a

Average inter-arrival time of
vessels: Du (periods)

Du = exp[2]b

Period when berthing position b
is available for the first time in
the planning horizon:
u ber
b ; b 2 B (period)

u ber
b ¼ 0 8b 2 B

Periods required for handling
vessel v at its preferred berthing

position: fu ht
v ; v 2 V (periods)

fu ht
v ¼ round U 10; 24½ �ð Þ 8v 2 V c,d

Periods required for handling
vessel v at berthing position b:
u ht
vb; v 2 V ; b 2 B (periods)

u ht
vb ¼ roundþ fu ht

v � 1þ 0:03 � abs Bpr
v � Bas

v

� �� �� �
8v 2 V ; b 2 B

Negotiated departure period for
vessel v: u d

v ; v 2 V (period)
u d
v ¼ round u a

v þ fu ht
v � U 1:20; 1:50½ �

� �
8v 2 V

Draft of vessel v: Dves
v ; v 2 V

(feet)
[41.0; 41.0; 42.7; 47.6; 49.9; 50.9]

Depth of berthing position b:
Dber
b ; b 2 B (feet)

Dber
b ¼ 1:20 �minv Dves

v

� �þ U 0; 1:20 �maxv Dves
v

� ��minv Dves
v

� �� � 8b 2 B

Length of vessel v: Lves
v ; v 2 V

(feet)
[820.2; 951.4; 935.0; 984.3; 1200.8; 1312.3]

Length of berthing position b:
Lber
b ; b 2 B (feet)

Lber
b ¼ 1:20 �minv Lves

v

� �þU 0; 1:20 �maxv Lves
v

� ��minv Lves
v

� �� � 8b 2 B

Minimum vertical clearance
requirement for vessel v (feet):
Pver
v ; v 2 V (feet)

Pver
v ¼ U 4; 8½ � 8v 2 V

Minimum horizontal clearance
requirement for vessel v:
Phor
v ; v 2 V (feet)

Phor
v ¼ U 50; 100½ � 8v 2 V

Unit waiting cost for vessel v:
wwt

v ; v 2 V (US$/period)
wwt

v ¼ U 1000; 5000½ � 8v 2 V

Unit handling cost for vessel v:
w ht

v ; v 2 V (US$/period)
wht

v ¼ U 50000; 70000½ � 8v 2 V

Unit late departure cost for
vessel v: w lt

v ; v 2 V (US
$/period)

w lt
v ¼ U 5000; 10000½ � 8v 2 V

Large positive number: Y 10000

Notes: aNotation roundþ(Val1) is for the nearest integer larger than Val1;
bnotation exp[Val2] is for the

exponentially distributed pseudorandom numbers with an average of Val2;
c notation round(Val3) is for the

nearest integer to Val3;
dnotation U[Val4; Val5] is for the uniformly distributed pseudorandom numbers that

range from Val4 to Val5
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6.2 Algorithmic parameter tuning
All the algorithms developed in this study have some parameters, which should be assigned
the appropriate values to ensure adequate performance of the algorithms (Eiben and Smith,
2003; Dulebenets et al., 2019; Dulebenets, 2019; Kavoosi et al., 2019). The process of
algorithmic parameter selection is called “parameter tuning” (Eiben and Smith, 2003). Two
approaches have been commonly used in the literature for conducting the parameter tuning
(Eiben and Smith, 2003):

(1) full factorial design; and
(2) Taguchi’s scheme.

The Taguchi’s scheme is used when the number of parameters to be tuned is significant,
and consideration of all the possible combinations of the parameter values may be
prohibitive in terms of the computational time required; therefore, only “the most
favorable parameter combinations” are considered (Dulebenets, 2019). Given the fact that
the number of parameters does not exceed 5 parameters for each one of the considered
algorithms, the full factorial design methodology was used for the parameter tuning in
this study. Based on the full factorial design methodology, all the possible combinations
of the parameter values have to investigated to determine the best one, taking into
account the tradeoff between the solution quality at termination and the computation
time incurred.

A total of 4 large-size problem instances were randomly selected from all the
generated large-size problem instances, described in Section 6.1 of the manuscript, to
conduct the parameter tuning. Given stochastic nature of the candidate metaheuristic
algorithms, a total of 10 replications were performed to determine the average objective
function and computational time values for each problem instance. Table III summarizes
the parameter tuning results for UIMA, EA, PSO, EDA, DE, VNS, TS, and SA. Note that
the considered single-solution-based algorithms (VNS, TS, and SA) had to change two
vessel to berth assignments (randomly selected) or two vessel to service order
assignments (randomly selected) to create a new solution during the local search. The
maximum number of iterations was used as a stopping criterion for UIMA, PSO, VNS,
TS, and SA, while the maximum number of generations was used as a stopping criterion
for EA, EDA, and DE.

6.3 Solution quality evaluation against exact optimization
CPLEX and all the candidate metaheuristic algorithms were executed for all the
developed small-size problem instances, and the results are reported in Table AI and
AII. Note that Table AI and AII are provided in Appendix, which accompanies this
manuscript. The computational time limit and the relative optimality gap for CPLEX
were set to 7200 seconds and 0.01, respectively, while the remainder of the CPLEX
parameters remained default. A total of 10 replications were performed for each
algorithm to determine the average objective function and computational time values
for each small-size problem instance. Based on the results from the conducted
analysis, CPLEX could return the global optimum only for the first 19 small-size
problem instances. The computational time limit was not sufficient for CPLEX to
solve problem instances P20-P24 to the global optimality. It was observed that the
considered metaheuristic algorithms were able to return either optimal or near-
optimal solutions for a significant number of the developed small-size problem
instances. The maximum optimality gap of the developed UIMA algorithm did not
exceed 2.50 per cent, which demonstrates a high accuracy of UIMA. The other
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population-based metaheuristic algorithms (EA, PSO, EDA, and DE) and single-
solution-based algorithms (VNS, TS, and SA) showed an acceptable accuracy with the
optimality gaps, which generally did not exceed �5 per cent for the generated small-
size problem instances. Also, the considered metaheuristic algorithms were able to
converge much faster as compared to CPLEX. Specifically, the computational time of
the candidate metaheuristic algorithms did not exceed 60 sec over the generated
small-size problem instances.

6.4 Universal island-based algorithm evaluation against the alternative metaheuristics
All the candidate metaheuristic algorithms were executed for all the developed large-
size problem instances, and the results are reported in Table AIII and AIV. Note that
Table AIII and AIV are provided in Appendix, which accompanies this manuscript. A

Table III.
The algorithmic

parameter tuning
results based on the
full factorial design

methodology

Algorithm Parameter Candidate values Selected value

UIMA Population size (PopSize) a [240; 280; 320] 240
UIMA Migration criterion (l ) [0.1; 0.2; 0.3] 0.1
UIMA Number of immigrants (Nimg) [3; 4; 5] 4
UIMA Stopping criterion (MaxIter) [1200; 1400; 1600] 1600
EA Population size (PopSize)b [40; 50; 60] 60
EA Crossover probability (s c) [0.3; 0.5; 0.8] 0.8
EA Mutation probability (sm) [0.01; 0.04; 0.06] 0.06
EA Number of chromosomes attending each

tournament (TourSize)
[20; 30; 40] 40

EA Stopping criterion (MaxGen)b [4000; 5000; 6000] 6000
PSO Population size (PopSize)b [40; 50; 60] 60
PSO Cognition component (C1) [1.5; 2.0; 2.5] 2.0
PSO Social component (C2) [1.5; 2.0; 2.5] 1.5
PSO Inertia weight (W) [0.3; 0.5; 0.8] 0.5
PSO Stopping criterion (MaxIter)b [4000; 5000; 6000] 6000
EDA Population size (PopSize)b [40; 50; 60] 60
EDA Shaking coefficient (« ) [0.1; 0.3; 0.5] 0.1
EDA Elitism coefficient (c ) [0.4; 0.6; 0.8] 0.6
EDA Stopping criterion (MaxGen)b [4000; 5000; 6000] 6000
DE Population size (PopSize)b [40; 50; 60] 60
DE Mutation coefficient (a) [0.4; 0.6; 0.8] 0.8
DE Crossover probability (s c) [0.3; 0.5; 0.6] 0.3
DE Stopping criterion (MaxGen)b [4000; 5000; 6000] 6000

VNS Local search size SVNS
ls

� �
[15; 20; 25] 20

VNS Stopping criterion (MaxIter) [4000; 5000; 6000] 6000

TS Tabu list size STS
tl

� �
[10; 15; 20] 10

TS Local search size STS
ls

� �
[15; 20; 25] 20

TS Stopping criterion (MaxIter) [4000; 5000; 6000] 6000
SA Initial Boltzmann temperature (t ) [2000; 3000; 3500] 3500
SA Temperature interval (Dt ) [0.10; 0.30; 0.50] 0.50
SA Stopping criterion (MaxIter) [4000; 5000; 6000] 6000

Note: aThe UIMA population was evenly distributed between its four islands (i.e. the UIMA population of
240 individuals was distributed between its four islands in the way that the EA, PSO, EDA, and DE sub-
populations would have 60 individuals per sub-population); bthe population size and stopping criterion that
were set for EA, PSO, EDA, and DE when they were executed independently
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total of 10 replications were performed for each algorithm to determine the average
objective function and computational time values for each large-size problem instance.
Based on the results from the conducted analysis, the objective values by UIMA were
superior to the ones, obtained by EA, PSO, EDA, and DE, on average by 11.03 per cent,
12.03 per cent, 12.92 per cent, and 11.76 per cent, respectively. Such outcome can be
explained by the fact that UIMA uses EA, PSO, EDA, and DE as search tools to cover
different areas (i.e. islands) of the search space and is able to more effectively explore
various domains of the search space.

Moreover, migration of individuals from one UIMA island to the other islands
enables the algorithm to effectively exploit the promising search space domains for
superior solutions. On the other hand, execution of the considered population-based
metaheuristic algorithms in isolation (i.e. the EA, PSO, EDA, and DE algorithms)
imposes limitations on the search process, which further negatively affects the solution
quality at termination of such algorithms. The numerical experiments show that the
considered single-solution-based algorithms (VNS, TS and SA) generally performed
worse in the terms of the solution quality as compared to UIMA and the considered
population-based metaheuristic algorithms. Specifically, the objective values by UIMA
were superior to the ones, obtained by VNS, TS, and SA, on average by 19.01 per cent,
20.21 per cent, and 19.13 per cent, respectively. Such finding can be supported by the
fact that, unlike population-based metaheuristic algorithms, single-solution-based
metaheuristic algorithms perform operations with just one solution in a given domain
of the search space and its neighbor(s), which limits their explorative and exploitative
capabilities.

In terms of the computational efforts, the average computational times, obtained over 10
replications for UIMA, EA, PSO, EDA, DE, VNS, TS, and SA, are equal to 211.81 sec,
155.60 sec, 70.29 sec, 132.26 sec, 86.34 sec, 11.62 sec, 12.74 sec, and 11.85 sec, respectively, for
the generated large-size problem instances. Furthermore, the average computational times
per iteration/generation, obtained over 10 replications for UIMA, EA, PSO, EDA, DE, VNS,
TS, and SA, comprise 0.1324 sec, 0.0259 sec, 0.0117 sec, 0.0220 sec, 0.0144 sec, 0.0019 sec,
0.0021 sec, and 0.0020 sec, respectively, for the generated large-size problem instances. The
average computational time did not fluctuate substantially from one iteration/generation to
another for each one of the considered solution algorithms. The highest computational time
was recorded for UIMA. Such pattern can be justified by the fact that the UIMA algorithm
performs more steps throughout the search process as compared to the alternative
population-based metaheuristic algorithms, which were executed independently, and the
considered single-solution-based metaheuristic algorithms. However, the maximum UIMA
computational time did not exceed 306 sec.

The scope of numerical experiments also includes the analysis of algorithmic
performance throughout the search process. The average objective function values over 10
replications, returned by the considered metaheuristic algorithms in each generation/
iteration (the term “generation” is related to EA, EDA, and DE, while the term “iteration” is
related to UIMA, PSO, VNS, TS, and SA), are plotted in Figure 12 against the number of
generations/iterations mapped to the range [0, 1]. Such mapping was adopted due to the
differences in the stopping criteria, which were set for the considered metaheuristic
algorithms. Specifically, UIMA was terminated after 1,600 iterations, while PSO, VNS, TS,
and SA were terminated after 6,000 iterations. On the other hand, EA EDA, and DE were
terminated after 6,000 generations. The convergence pattern diagrams for the considered
algorithms are illustrated in Figure 12 for the 12 largest problem instances (i.e. P37-P48).
Similar convergence patterns were observed for the remainder of the large-size problem
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Figure 12.
The convergence
patterns of all the

considered
algorithms for the
large-size problem

instances P37 to P48
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instances. All the diagrams start from the same point as the same initial population
generation strategy was adopted for all the considered metaheuristic algorithms (see Section
5 of the manuscript for more details). The convergence patterns demonstrate that the
developed UIMA algorithm was able to move more effectively along the search space and
discover superior solutions as compared to the alternative population-based and single-
solution-based metaheuristic algorithms.

The numerical experiments, conducted as a part of this study, demonstrate a clear
superiority of the developed UIMA algorithm over the population-based and single-solution-
based metaheuristic algorithms, which have been commonly applied in the BSP literature, in
terms of the solution quality at convergence. Moreover, the proposed solution approach can
be considered as competitive in terms of the computational time as well, since the maximum
UIMA computational time did not exceed 306 sec over the generated large-size problem
instances (with up to 10 berthing positions and 110 vessels calling for service at the MCT).
Therefore, the developed UIMA algorithm can be used by the MCT operators as an efficient
decision support tool and assist with a cost-effective design of berth schedules within an
acceptable computational time. In the meantime, the berth schedules, suggested by UIMA,
capture preferences of liner shipping companies as well; since they directly account for the
total late departure cost of the arriving vessels at the MCT (see Section 4 of the manuscript).
Timely departures of vessels fromMCTs are critical for effective liner shipping.

6.5 Managerial insights
This section of the manuscript focuses on the analysis of managerial insights, aiming to
determine how changes in the unit cost components of the SCBSP mathematical model (i.e.
unit waiting cost, unit handling cost, and unit late departure cost) could impact the berth
scheduling decisions. The analysis was conducted for the problem instance P48 (i.e. the
problem instance with the largest number of the arriving vessels and the largest number of
the berthing positions, which are available for vessel service at the considered MCT). UIMA
was used as a solution approach for the SCBSP mathematical model. A total of 10
replications were performed for the considered scenarios with different values of the unit
cost components to estimate the average values of the following performance indicators:

� the SCBSP objective function value (i.e. the total vessel service cost);
� the total vessel waiting time;
� the total vessel handling time; and
� the total vessel late departure time.

First, a total of 21 scenarios were developed by increasing the unit waiting cost ranges from
US$1,000 and US$5,000 to US$5,000 and US$9,000 with an increment of US$200/period (i.e.
the unit waiting cost for scenario “1”was generated as wwt1

v ¼ U 1000; 5000½ � 8v 2 V , while
the unit waiting cost for scenario “21” was generated as wwt21

v ¼ U 5000; 9000½ � 8v 2 V ).
The values of the remaining parameters of the SCBSP mathematical model (see Table II)
were assumed to be unchanged for all the generated unit waiting cost scenarios. The results
of the conducted unit waiting cost sensitivity analysis are presented in Figure 13. As the
unit handling cost and the unit late departure cost components were constant, and the unit
waiting cost increased from scenario “1” to “21”, the total vessel service cost increased as
well (the total vessel service cost increased by�0.55 per cent from scenario “1” to “21”). The
numerical experiments show that the total vessel waiting time generally decreased after
increasing the unit waiting cost from one scenario to another by assigning the arriving
vessels to the first available berthing positions. A reduction in the total vessel waiting time
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further decreased the total vessel late departure time. However, the assigned berthing
positions were not preferred berthing positions for certain vessels, which caused an increase
in the total vessel handling time.

Second, a total of 21 scenarios were developed by increasing the unit handling cost
ranges from US$50,000 and US$70,000 to US$70,000 and US$90,000 with an increment of
US$1000 /period (i.e. the unit handling cost for scenario “1” was generated as
w ht1

v ¼ U 50000; 70000½ � 8v 2 V , while the unit handling cost for scenario “21” was
generated as w ht21

v ¼ U 70000; 90000½ � 8v 2 V ). The values of the remaining parameters of
the SCBSP mathematical model (Table II) were assumed to be unchanged for all the
generated unit handling cost scenarios. The results of the conducted unit handling cost
sensitivity analysis are presented in Figure 14. As the unit waiting cost and the unit late
departure cost components were constant, and the unit handling cost increased from
scenario “1” to “21”, the total vessel service cost increased as well (the total vessel service
cost increased by �41.86 per cent from scenario “1” to “21”). The numerical experiments
show that the total vessel handling time generally decreased after increasing the unit
handling cost from one scenario to another by assigning the arriving vessels to their
preferred berthing positions. However, certain vessels had to wait in the designated waiting
area of the MCT until their preferred berthing positions became available for service, which
further increased the total vessel waiting time and the total vessel late departure time.

Third, a total of 11 scenarios were developed by increasing the unit late departure cost
ranges from US$5,000 and US$10,000 to US$10,000 and US$15,000 with an increment of US
$500/period (i.e. the unit late departure cost for scenario “1” was generated as
w lt1

v ¼ U 5000; 10000½ � 8v 2 V , while the unit late departure cost for scenario “11” was
generated as w lt11

v ¼ U 10000; 15000½ � 8v 2 V ). The values of the remaining parameters of
the SCBSP mathematical model (Table II) were assumed to be unchanged for all the
generated unit late departure cost scenarios. The results of the conducted unit late departure
cost sensitivity analysis are presented in Figure 15. As the unit waiting cost and the unit
handling cost components were constant, and the unit late departure cost increased from
scenario “1” to “11”, the total vessel service cost increased as well (the total vessel service

Figure 13.
Sensitivity of berth
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Berth
scheduling

57



cost increased by �0.73 per cent from scenario “1” to “11”). The numerical experiments
show that the total vessel late departure time generally decreased after increasing the unit
late departure cost from one scenario to another by assigning the arriving vessels to the first
available berthing positions. Since the arriving vessels were mostly assigned to the first
available berthing positions, the total vessel waiting time decreased from one scenario to
another as well. However, the assigned berthing positions were not preferred berthing
positions for certain vessels, which caused an increase in the total vessel handling time.

Figure 15.
Sensitivity of berth
schedules to the unit
late departure cost

Figure 14.
Sensitivity of berth
schedules to the unit
handling cost
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7. Conclusions and future research extensions
TheMCT operators are looking for effective decision support tools that can assist with berth
scheduling to serve the increasing demand for containerized trade and avoid potential vessel
service delays. Island-based metaheuristic algorithms have been found to be efficient for
various challenging decision problems, but have not been used in the berth scheduling
literature. A UIMA was proposed in this study, aiming to solve the spatially constrained
BSP. The UIMA population was divided into four sub-populations (i.e. islands). Four
different population-based metaheuristics were adopted to search the islands, including the
following:

(1) EA;
(2) PSO;
(3) EDA; and
(4) DE.

The adopted population-based metaheuristic algorithms rely on different operators, which
facilitate the search process for superior solutions on the UIMA islands.

The conducted numerical experiments demonstrated that the developed UIMA algorithm
returned near-optimal solutions for the small-size problem instances. As for the large-size
problem instances, UIMA was found to be superior to the EA, PSO, EDA, and DE algorithms,
which were executed in isolation, in terms of the obtained objective function values at
termination. Furthermore, the developed UIMA algorithm outperformed various single-
solution-based metaheuristic algorithms (including Variable Neighborhood Search, Tabu
Search, and Simulated Annealing) in terms of the solution quality. The analysis of convergence
patterns demonstrated that the developed UIMA algorithm was able to move more effectively
along the search space and discover superior solutions as compared to the alternative
metaheuristic algorithms. As for the computational time, the maximum UIMA computational
time did not exceed 306 sec over the generated large-size problem instances, which can be
considered as acceptable from the practical point of view. Therefore, the developed UIMA
algorithm can be used by the MCT operators as an efficient decision support tool and assist
with a cost-effective design of berth schedules within an acceptable computational time.

This study has a number of potential future research extensions, including:
� development of new approaches for migration;
� consideration of new strategies for immigrant selection and removing individuals

on the destination islands;
� development of new strategies for the population initialization and assignment of

sub-populations to the islands;
� design of a new solution representation, which is compatible with all the adopted

algorithms;
� development of new strategies for handling the infeasible solutions throughout the

search process;
� consideration of uncertainties in the MCT operations (e.g., uncertainty in vessel

arrival times, uncertainty in vessel handling times, potential internal transport
vehicle breakdowns);

� modeling different berthing layout types (i.e., continuous, hybrid, channel); and
� evaluation of the developed UIMA algorithm for the integrated MCT decision

problems at the seaside (e.g. berth scheduling and quay crane assignment).
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The objective values
and computational
times by UIMA and
the candidate single-
solution-based
algorithms for the
large-size problem
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