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Abstract
Purpose – Bulk shipping mostly facilitates the smooth flow of raw materials around the globe. Regardless,
forecasting a bulk shipbuilding orderbook is a seldom researched domain in the academic arena. This study
aims to pioneer an econophysics approach coupled with an autoregressive data analysis technique for bulk
shipbuilding order forecasting.
Design/methodology/approach – By offering an innovative forecasting method, this study provides a
comprehensive but straightforward econophysics approach to forecast new shipbuilding order of bulk carrier.
The model has been evaluated through autoregressive integrated moving average analysis, and the outcome
indicates a relatively stable good fit.
Findings – The outcomes of the econophysics model indicate a relatively stable good fit. Although relevant
maritime data and its quality need to be improved, the flexibility in refining the predictive variables ensure
the robustness of this econophysics-based forecastingmodel.
Originality/value – By offering an innovative forecasting method, this study provides a
comprehensive but straightforward econophysics approach to forecast new shipbuilding order of bulk
carrier. The research result helps shipping investors make decision in a capital-intensive and uncertainty-
prone environment.

Keywords Shipbuilding, ARIMA, Bulk carriers, Econophysics approach, Newbuilding order forecasting,
Newton’s law of gravitation

Paper type Technical paper

1. Introduction
The new bulk shipbuilding order injects fluidity in the bulk shipping market, provides
insight into the global economy, and remains remains an important indicator to decision
making in shipping investments. The research on newbuilding order forecasting in the
academic arena is scarce. Commercial newbuilding order forecasts are also either
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inaccessible and unclear or complex with outcomes that frequently go off beam. The
absence of effective but flexible forecasting methodology that could manage the
intricacy of the newbuilding domain seems the plausible cause of research scarcity in
bulk shipbuilding order forecasting. The earlier research that addresses the bulk
shipbuilding order forecasting advocate supply and demand model (Nielsen et al.,
1982), ARIMA-based fleet renewal decision model (Yang et al., 2019), system dynamics
model (Wada et al., 2018), time-series analysis (Stopford, 2001; Chen et al., 2014), vessel-
based logit model (Alizadeh et al., 2016) and judgmental approach (Duru and Yoshida,
2009; Ariel, 1989). These models reflect on the high volatility of the complex bulk
shipbuilding orderbook with a small number of parameters. Consequently, the
outcomes of the forecasting models either go astray or remain less explainable.
Econophysics approach of modelling can be useful with the flexibility to address this
intricacy of the bulk shipbuilding orderbook forecasting.

Econophysics is a hybrid field that houses the strengths of both economics and physics
and creates a bridge over a volatile and complex scenario (Chen and Li, 2012; Mantegna,
2016). It is a marriage between social and physical sciences (Schinckus, 2010) that provides a
completely new avenue to address multifarious business environments, where careful
assumptions of economics and empirical trends of physics resonate together providing
meaningful elucidation. Though influenced by diverse constructs and conjectures, shipping
is yet to embrace the econophysics approach of inference.

However, there are successful instances of applying econophysics approach in fields that
include business volatility and stock markets, economic value and growth, economic and
financial time series, behavioural finance, corporation financial stability, distribution and
interactions of economic entities, market structure and financial risks (Chen and Li, 2012;
Chakraborti et al., 2011; Huang, 2015; Guedes et al., 2019; Schinckus and Jovanovic, 2013;
Zapart, 2015; McCauley, 2004; Meng et al., 2016; Rickles, 2007; Zhong et al., 2019). Mainly the
concepts of physics such as Bernoulli’s equation, Newton’s law of gravitation, Brownian
motion, Schrodinger equation, Bose-Einstein distribution, Gaussian function, Fourier
transformation, and Heisenberg’s uncertainty principle have been adopted to naturalise the
econophysics models (Donmez and Sen, 2018; Meng et al., 2016; Zhang and Huang, 2010;
Cotfas, 2013; Pedram, 2012; Mantegna, 2016; Kusmartsev, 2011; Agustini et al., 2018; Hsu,
2010; Wang and Pei, 2015). This study illustrates a flexible econophysics model that can
manage numerous relevant constructs of bulk shipbuilding order forecasting by using
Newton’s law of gravity.

Previously, Newton’s law of gravity has been used in international trade to model
bilateral trading flow and efficiency (Tinbergen, 1962; Abidin et al., 2013; Bialynicka-Birula,
2015), and also in the regional study to investigate regional integration effect (Darku, 2009).
In this study, Newton’s law of gravitation has been naturalised for a bulk shipbuilding order
forecasting model by developing predictors or variables with concerned constructs informed
through the literature review on trends and factors of shipbuilding. Not all factors have been
accommodated into the predictors because of either the relational distance with predictors or
the non-availability of data. The developed model has been evaluated and trained through
the auto-regressive integrated moving average (ARIMA) analysis technique of the SPSS
software.

In the rest of the paper, Section 2 presents the literature review and sets the ground for
developing predictors. Section 3 elaborates on the econophysics methodology. Section 4
illustrates data analysis and discusses the bulk shipbuilding forecast outcomes of this
study. Section 5 is the conclusion.
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2. Literature review
2.1 Trends of shipbuilding industry
Booms and bursts are common in the shipbuilding industry. China, South Korea and Japan are
now the leading shipbuilding nations in the world. In each shipbuilding segment, these
countries are competing with each other trying to optimise on their shipbuilding capabilities
and deliveries. The bulk shipbuilding dominates in the newbuilding orderbook. Bulk shipping
mainly serves the global resources sector; as a result, the bulk newbuilding order indicates the
global production and economic dynamism. Figures 1 and 2 present segment-wise newbuilding
order trends and newbuilding deliveries of the leading shipbuilding nations respectively.

The bulk shipping freight task is a dominating part in the growth of international
seaborne freight transportation task (in tonne-km) that indicates the demand-side of
shipping capacity (UNCTAD, 2018a). The global economic growth affects trade. Trade
derives international seaborne-freight transportation task, where bulk shipping remains
critical. However, the evolution of bulk fleet capacity presents the supply-side that is
determined by subtracting the demolition figure from the summation of existing fleet and
new delivery figures. Therefore, ship demolition and new delivery dynamics become crucial
in meeting the seaborne-trade derived freight-transportation demand.

Figure 1.
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Figure 2.
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Capacity oversupply also persists in shipping industry. Figure 3 illustrates the global
shipbuilding delivery, demolition and seaborne-trade trends. One of the consequences of
shipping capacity oversupply is the low shipping freight-rate that mainly fluctuates based
on the demand of international seaborne-freight transportation task and the supply of the
vessel capacity. Nevertheless, the prospect of favourable future freight-rate drives the
newbuilding order (Stopford, 2009).

The growth of shipbuilding is also explainable through newbuilding ship price and scrap
price. The newbuilding prices in the dry bulk sector are related to the current and expected
freight rates and global economic growth (Beenstock, 1985). Firstly, the growth of world
trade and heavy industries boost newbuilding market (Imai, 2008); secondly, the uncertainty
in global economic growth and freight-rate volatility affect the shipbuilding market; finally,
the adoption of systematised technology and innovation provide leverage to newbuilding
(Lim et al., 2017). The factors concerning these drivers require a closer look for shipbuilding
order forecasting study.

2.2 Factors impacting shipbuilding
Shipbuilding order forecasting is a complex, cumbersome and less researched area. It is
because the growth of the industry is nonlinear and is affected by various volatile and
exogenous factors such as international political events and the strategy of shipbuilding
nations. The confidential characteristics of the shipbuilding market are another reason for
limited research (Charemza and Gronicki, 1981). However, determining an appropriate
timing for investment in new shipbuilding is regarded as a mysterious quality (Goulielmos
and Psifia, 2009), where forecasting in the short-term can play a critical role.

Historically, international politics and implementation of international regulations affect
the shipbuilding industry. In the past, the shipbuilding industry was influenced by political
intervention, pre-war demand, post-war redevelopment due to wartime losses, Suez Canal
closure, shortage of shipbuilding capacity (dockyard shortage), government credit and
incentive schemes, continuous recession (1920-1942 period), 1980s depressions etc. (Stopford,
2009). The governments’ protective views and over-optimism bring in subsidies that also
distort the shipbuilding industry frequently. Ship-owners’ unconstructive attitudes towards
global trade growth cause over-supply that eventually impact shipbuilding industry
(Stopford, 1987; Chou and Chang, 2004). In the present time, economic competitiveness, new
management system innovative technology become critical for newbuilding order attraction
(Zheng et al., 2013; Vishnevskiy et al., 2017; Jha, 2016). From ship’s operational perspective,
the ship speed has an impact on newbuilding; for instance, a slow speed generates more

Figure 3.
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supply requirement for the same quantity of seaborne-freight transportation task and vice-
versa. Speed reduction also assists balancing oversupply rather than accelerating
newbuilding order. However, the ultimate competition in newbuilding largely depends on the
level of demand and supply volatility, shipbuilding price, ship-owners’ attitudes towards
demand volatility, and shipbuilding nations’ strategy (Shin and Lim, 2014).

A consistent shipbuilding decision requires a well-thought forward planning to meet a
situation where a continuous demand may exist. Kavussanos and Alizadeh (2002) illustrate
that current market rates and long-term equilibrium rates influence newbuilding,
particularly in the dry-bulk market. Irrespective of ship-sizes and freight-rate volatility,
influential factors for newbuilding order include exchange rate volatility, shipyard capacity
change, and shipbuilding cost volatility (Dai et al., 2015). However, the quality data on these
factors are either not available or inaccessible. Existing data quality is improving though
(Halim et al., 2019). For bulk shipbuilding order forecasting model, it is important to focus on
the balancing factors of demand and supply sides of the market that forms the core part of
the newbuilding activity (Stopford, 2009). In other words, global economic growth, freight-
rate volatility and systematised technology play a crucial role in shipbuilding decisions for
ship-owners. Adopting new technology in shipbuilding decision is leveraged through the
demolition market. For demolition, the ships of age 20 years and above are always regarded
as best candidates (Stopford and Barton, 1986; BRS Group, 2019). The scrap price leverages
the newbuilding decision. Hence, the ship demolition market appears as a balancing element
between the supply and demand that ultimately drives the market equilibrium and freight-
rate level (Karlis and Polemis, 2016). The newbuilding price index affects the shipbuilding
orders. The banking system that provides a letter of credit for shipbuilding also focuses on
the newbuilding price index. Hence, the ratio of scrap price to newbuilding price index is
directly related to the newbuilding order. The higher the ratio the higher the probability of
newbuilding order. Various challenges in shipbuilding also form an “uncertain part” that
always looms in the forecasting of newbuilding order. In econophysics, uncertainty is
mostly dealt with a coherent manner appreciating other factors and quality data on the
factors. The uncertainty reduces also with the improvement of the models (Chen, 2017;
Dionisio et al., 2006; Schinckus, 2009). As such, applying econophysics approach to
forecasting not only adds value as a pioneering tool to shipbuilding forecasting but also
provides an insight on the “uncertainty part” in the newbuilding order forecasting.

Overall, the force that drives the shipbuilding order forms through the constructs such as
freight rate, international seaborne freight task, scrap price, newbuilding price index, the
share of scrapable ships of age 20 and above, existing fleet, new ship delivery and ship
demolition. This forms a reasonable set of factors or constructs to develop the predictors of
this study; other factors have not been accommodated into the predictors mainly either due
to the relational distance to predictors or non-availability of quality data. In context of the
above discussion, the next section illustrates the methodology of this research.

3. Econophysics methodology
The application of the theories of physics in economics or business is rapidly evolving and
proves efficient in many complex market scenario (Jovanovic and Schinckus, 2016; McCauley,
2004; Schinckus and Jovanovic, 2013; Zapart, 2015). The new shipbuilding market is a complex
dynamics where shipbuilding order is gravitated by the force between two critical masses: the
“existing shippingmarket prospect” and ship’s age-adjusted “future shippingmarket prospect”
(Stopford, 2009; Bruce and Garrard, 1999; UNCTAD, 2018a, Steidl et al., 2018). This force can
indicate the thrust for new shipbuilding order that resembles the force of gravity in physics.
With this notion, this study assumes an econophysics approach of forecasting new bulk
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shipbuilding order by adopting and naturalising Newton’s law of gravitation [equation (1)].
Figure 4 presents a logical framework of this methodology.

The developedmodel is then investigated within a data set between the years 2008 and 2017.
This period is chosen as all required data of the variables and constructs (that form the
independent variables for the econophysics model) are available and easily accessible. The
easily accessible data enhances the convenience of utilizing themodel. However, the multivariate
ARIMA analysis is adopted to examine the forecasting model. The multivariate ARIMA has
been chosen as it captures a set of various standard temporal constructs in the time series data
(Gujarati, 2003; Tabachnick and Fidell, 2007; Duke University, 2018) which is the case for this
shipbuilding order forecasting through econophysics approach. In other words, the ARIMA
statistical analysis technique well suits with the complexity of the new shipbuildingmarket. The
rest of this section depicts the development of themodel and illustrates the data.

Newton’s law of gravitation in physics is expressed as follows:

F ¼ G
M1 �M2

d2
(1)

where:
F ! denotes the force between the two objectsM1 andM2;
M1! indicates the mass of one object;
M2! indicates the mass of the other object;
d ! refers to the distance between the two objects; and
G ! indicates the gravitational constant.

Resembling Newton’s law of gravitation, the force for the new bulk shipbuilding order is
framed as follows:

SbOB ¼ UB
Bfr � Bfp

dB2
(2)

where:
Bfr ! indicates the existing bulk shippingmarket prospect;
Bfp ! indicates the future bulk shippingmarket prospect;
SbOB! refers to the force betweenBfr andBfp and indicates the new shipbuilding order;
dB ! refers to the distance between Bfr andBfp indicated by the fleet evolution; and
UB ! indicates the uncertainty constant for the concerned newbuilding shippingmarket.

Figure 4.
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For simplicity, replacing dB
2 by dBsq and assuming the value of UB in equation (3) as 1

(binary one) to recognise the presence of uncertainty (which later will be evolved as the
unexplained variance of the dependent variable during ARIMA analysis) equation (3) is
expressed as follows:

SbOB ¼ Bfr � Bfp

dBsq
(3)

The orientation and constructs of the dependent variable (SbOB) and relevant independent
variables (Bfr, Bfp and dBsq) of this econophysics model for bulk shipbuilding forecasting in
equation (3) have been further elaborated in Table 1.

Table 1.
Naturalizing the
variables of
econophysics model
for new bulk
shipbuilding order
forecasting

Variables of the proposed econophysics model,

SbOB ¼ Bfr � Bfp

dBsq

Proposed constructs of the variables in bulk
shipbuilding forecasting model

Bfr ! the existing bulk shipping market
prospect

It can be measured by the product of ‘bulk freight rate
(BBDI)[the Baltic Dry Index (BDI) is used]’ and the
‘international seaborne main bulk freight task (BIST)’.
The data sources are the Clarkson database for BBDI and
UNCTAD report (analysis based on Clarkson database)
for BIST

Bfp ! the future bulk shipping market prospect It can be measured by the product of the percentage
share of bulk ships age of twenty and above (BTWA)’ and
‘the ratio between the average bulk ship scrap price
(BSCRP) and shipping newbuilding price index (BNBPI)’.
The data sources include the Clarkson database for BNBPI
and UNCTAD report (analysis based on Clarkson
database) for BTWA and the report of the French-based
brokers house the Barry Rogliano Salles (BRS) Group
(analysis based on Clarkson database) for BSCRP

dBsq ! the square of the distance between
‘Bfr’ and ‘Bfp

It is measured by the ‘fleet evolution in the bulk shipping
market’.
The fleet evolution of the bulk market is further
determined by the summing ‘existing bulk fleet (BFLT)’
with the ‘new delivered bulk fleet (BNDEL)’ and then
subtracting the ‘bulk fleet demolition (BDEMO)’ from the
summation.
The data sources for all three constructs (BFLT, BNDEL ,
BDEMO) are several reports of the French-based brokers
house the Barry Rogliano Salles (BRS) Group (analysis of
which are based on Clarkson database)

SbOB ! the force between ‘Bfr’ and ‘Bfp’ that
indicates bulk carrier new shipbuilding order

This is the target or dependent variable that will be
forecasted in this study for new bulk shipbuilding order.
The data sources for this variable (SbOB) include several
reports of the French-based brokers house the Barry
Rogliano Salles (BRS) Group (analysis based on Clarkson
database)
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Based on the proposed variables and constructs of the variables presented in Table 1, the
equation (3) finally takes the following overarching form:

where:
BBDI ! indicates bulk freight rate;
BIST ! indicates the “main bulk” international seaborne freight task;
BTWA ! indicates the share of bulk carriers of age 20 and above;
BSCRP ! indicates bulk carrier average scrap price;
BNBPI ! indicates bulk carrier newbuilding price index;
BFLT ! indicates the bulk carrier existing fleet;
BNDEL ! indicates bulk carrier new delivery; and
BDEMO ! indicates bulk carrier demolition.

In this proposed model, the relationships of the dependent variable, SbOB (the new bulk
shipbuilding order) with the independent variables (Bfr, Bfp and dBsq) play a significant role
in naturalizing with the econophysics approach (in this case, the use of Newton’s law of
gravitation). Further elaborating on this naturalising aspect, it is to state that the new bulk
shipbuilding order sits at the crossroad between the demand and supply. In other words, it
balances two loops such as the supply-side capacity adjustment loop and the demand-side
capacity utilisation loop (Randers and Göluke, 2007). The increase in shipping capacity
(supply or fleet evolution) can decrease capacity utilisation efforts or demand meeting
efforts (in this case, new shipbuilding order). The fleet evolution also creates the distance
(dB) between the “existing bulk shipping market prospect” and “future bulk shipping market
prospect”. Hence, inversely proportional relation exists between the fleet evolution [i.e.
(existing ships þ new deliveries – ship demolitions), later squared and expressed as dBsq]
and the new bulk shipbuilding order (SbOB).

On one hand, the conjugate momentum of ascending or descending freight rate and
international seaborne freight task increases or decreases the new shipbuilding order
prospect respectively (DSF, 2018; Stopford, 2009). The international seaborne freight task is
a direct reflection of the global economic growth in maritime business, while the global
economic growth increases global trade and in-turn the international seaborne freight task,
which is a derived demand of the trade (UNCTAD, 2018b). Hence, the “existing shipping
market prospect (Bfr)” as a product of the “freight rate” (in this case the BDI) and
“international seaborne freight task” is directly proportional to the new shipbuilding order
(SbOB). On the other hand, new shipbuilding ordering activity not only focuses on future
shipping market prospect but also regarded as a replenish activity of ship demolition. The
older vessels are first considered for ship demolition. In any ship category, the percentage
share of the ships of “age twenty and above” is sensitive to demolition particularly in the
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context of emissions reduction related emerging technology adoption possibility. However,
this age range (twenty and above) covers greater and nearly exhaustive list of probable bulk
scrap candidates. Besides this, the right time for demolition is when the scrap price is higher.
Hence, the “ratio between the average scrap price and new shipbuilding price indices” with
a multiplier of “twenty and above age ships” captures the “prospect of future new
bulk shipbuilding market (Bfp)” and is directly proportional to the new shipbuilding order
(SbOB).

However, forecasting new shipbuilding order is complex and involves constructs that
can be significantly influenced by the behaviour of the market players. This attitude or
behaviour is sometimes unexpected and not predictable (Stopford, 2009) and may arise
because of different viewpoints of the market players on international regulatory, business
and operational environment. Therefore, the unpredictable part of the new shipbuilding
order forecasting may appear as an unexplained variance of the dependent variable. The
data for this study is collected from various sources such as the Clarkson data, the
UNCTAD’s reports and database, OECD reports and the reports of the French-based
brokers house the Barry Rogliano Salles (BRS) Group. The data of Clarkson, UNCTAD,
OECD and BRS have been used because they are very much maritime focused and the data
references are adjusted every year based on the availability of actual data of immediate
previous years rather than depending on estimated data. The UNCTAD, OECD and BRS
data and their analyses are also in most cases based on Clarkson database that in-turn
ensures homogeneity of the data sources and enhances the generalizability and acceptability
of the data.

The data for this study has been gathered over the period from 2008 to 2017. This period
(2008-2017) has been chosen because of the optimal availability of quality data on all
required constructs of the models for bulk carrier newbuilding forecasting. Though yearly
data is prevalent and easily accessible rather than monthly data, monthly data is more
essential to comprehend the insights of the market dynamics through statistical analysis.
Based on the availability, the monthly data collection has been prioritised and later in case
of absence of monthly data the yearly data has been interpolated over the selected period in
various ways based on the characteristics of the data. Because of the interpolation of the
yearly data, which is a frequent practice in forecasting (Zhao et al., 2019; Tokumitsu et al.,
2015) and even in simulation and data generation (Li et al., 2020), the outliers in the data set
have been eroded automatically before starting the analysis. Aligning or removing outliers
as a logical pre-processing step of data analysis brings in benefits by avoiding a few bad
apples that may spoil the entire bushel (Cant and Xu, 2020; Shah and Patil, 2019; Lyutikova
and Shmatova, 2020).

The monthly data have been used finally for the ARIMA analysis for bulk new
shipbuilding order forecasting. The ARIMA analysis model has been used as it has the
capability of explaining a given irregularly patterned time series based on its own lags
(Ohyver and Pudjihastuti, 2018; Duan and Zhang, 2020), which is the case for several time
series used in this study. Due to the vastness of the monthly data, the yearly data have
been presented in Table 2 to provide a glimpse of the data requirement of this study.
Usually, the data are demonstrated in different units in different reports. For the sake of
analysis and to provide an even footing for the model, the data in this study have been
either synchronised in similar units or created indices through normalisation, taking
logarithm or converted in percentage share. The data shows a moderate cyclical nature of
about 36months or 3 years that has been declared during preparing the ARIMA analysis
technique through the SPSS.
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4. Data analysis and discussion
In this multivariate ARIMA analysis, there are three predictors or independent variables
(Bfr, Bfp and dBsq) for one dependent or outcome variable [the new bulk shipbuilding order
(SbOB)]. During fitting the analysis model for multivariate ARIMA through the SPSS
software, the econophysics model of this study (see equation (4) has been ensured by
assigning the variables as numerators (for Bfr and Bfp) and denominator (for dBsq). The
analysis has been completed in four stages such as 1) Checking data assumption and
identification of models, 2) model estimation and selection, 3) diagnosis and validation 4)
forecasting and discussion.

4.1 Checking data assumption and identification of models
Before data analysis, the normality and stationarity of the data have been checked and
found that log data of the variables are required to ensure normality (Figure 5 and Table 3).
Figure 5 shows a strong dependence of variability of the bulk shipbuilding order and

Table 2.
The yearly data on

the fundamental
constituents of the
variables on bulk

shipbuilding
forecasting

Year
SbOB

(in M dwt)
BFLT

(in M dwt)
BNDEL

(in M dwt)
BDEMO

(in M dwt)
BBDI

(Index)

BIST

(in Bill
Ton-Miles)

BTWA

(in % of
total dwt)

BSCRP

(yearly
average in

$US/
Long Ton)

BNBPI

(Index)

2008 85.4 391.13 28.9 0.48 6344.98 10476 30.30 452.5 191
2009 23.4 418.36 22.47 1.37 2612.47 11006 28.80 275.4 162
2010 88.5 456.62 79.55 0.76 2759.71 12336 27.40 390.4 150
2011 39.7 532.04 53 2.5 1546.61 13019 23.50 484.6 140
2012 24 623.01 54.24 3.54 923.67 14099 17.60 426.3 135
2013 75.4 686.64 34.55 2.3 1213.88 14764 11.00 398.8 125
2014 57 728.32 26.72 1.66 1104.17 15828 9.65 431.3 122
2015 33.8 761.78 26.76 2.89 712.66 15897 8.99 335.6 115
2016 16.3 779.29 25.93 3.04 675.81 16314 8.04 254.2 121
2017 39.2 795.52 21.05 1.43 1152.61 17217 7.01 354 125

Figure 5.
Normality test of the
dependent variable
bulk shipbuilding

order (SbOB)
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indicates the necessity of data transformation, for example, logarithmic transformation to
stabilise the variance. Table 4 depicts the detail normality tests of the variables.

As an assumption of the ARIMA analysis, the stationarity of the dependent variable
needs to be ensured (Gujarati, 2003; Tabachnick and Fidell, 2007), which has been taken care
of in this study by taking the first difference of the dependent variable (SbOB) during
performing the ARIMA analysis through the SPSS (Statistical Package for the Social
Sciences) software version 25. The requirement of taking the 1st difference of the dependent
variable during ARIMA analysis of this study (SbOB) is also evident from the descriptive
statistics as shown in Table 4.

As a common rule for the non-normal actual dependent variable, it is important to ensure
more than twenty records for each independent variable (Tabachnick and Fidell, 2007). In this
study, five years (2008-2012) monthly data have been used as a training data set. Later, eight
years of monthly data (2008-2015) have been used as the testing data set. This testing data set
has been emphasised for model selection and estimation as it ensures adequate data points
such as 96 records for each series. The monthly data from 2016-2017 is used during the
validation stage. Finally, ten years of monthly data (2008-2017) have used for predicted values
and future forecasting. The detail of the ARIMA analysis in four stages is provided below.

4.2 Model estimation and selection
The autocorrelation function (ACF) and partial autocorrelation function (PACF) have been
generated on the testing data set to estimate the tentative ARIMA models. Figure 6 shows
the correlograms of ACF and PACF of the log transformed bulk shipbuilding orders (Log of
SbOB) at the first non-seasonal differencing. Although the Lag spikes are within the 95%

Table 4.
Necessity of ensuring
normality of the bulk
shipbuilding
forecasting variables
through log
transformation
[based on monthly
‘testing data set’
(2008-2015)]

Test!
; Variables

Kolmogorov–Smirnova Shapiro–Wilk
Statistics df Sig. Statistics df Sig.

SbOB 0.118 96 0.002 0.922 96 0.000
Log of SbOB 0.068 96 0.200* 0.974 96 0.054
Bfr 0.193 96 0.000 0.767 96 0.000
Log of Bfr 0.085 96 0.083 0.980 96 0.159
Bfp 0.207 96 0.000 0.721 96 0.000
Log of Bfp 0.061 96 0.200* 0.980 96 0.153
dBsq 0.151 96 0.000 0.877 96 0.000
Log of dBsq 0.050 96 0.200* 0.981 96 0.170

Notes: aLilliefors Significance Correction. *This is a lower bound of the true significance

Table 3.
Indication of the
requirement of
achieving normality
and stationarity of
the variable
parameters

Skewness Kurtosis
Mean

(Std. Error) Variance SD

SbOB 0.752 �0.405 4.451 (0.261) 6.532 2.558
Bfr 2.210 6.158 25967904.519 (2280497.876) 499264373995425.200 22344224.623
Bfp 2.476 6.962 63.595 (6.069) 3536.063 59.465
dBsq 1.140 0.520 389081.537 (31302.547) 94065544849.836 306701.068
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confidence level, some spikes are still showing that significant information is contained and
there is a tendency of correlations.

Based on the significant closest lag spikes both in the ACF and PACF correlograms (i.e.
Lag1,3,9 and 12), the ARIMA models (1,1,3), (3,1,1), (1,1,9), (9,1,1), (3,1,9) (9,1,3), (12,1,1),
(12,1,3), (12,1,9) and (12,1,12) are selected tentatively and run. As usual, the distance lag
spikes are deliberately ignored initially (such as Lag24) to avoid model over-fitting but later
considered to achieve a stingy or parsimonious model. The outcome criteria (indicated in
column 1 in Table 5) of the tentative models are summarised in Table 5. The expectations of
the criteria values of the models are indicated in Column 2 in Table 5. Mainly the values on
the criteria such as the Stationary R-squared (the indicator of the variance captured by the
dependent variable), Normalized BIC (Bayesian Information Criteria) Index (designed to
choose between models as its lower value is better) Mean Absolute Error (MAE, the lower
value is better) are used to select a model.

The (12,1,1) ARIMA model has been selected as most appropriate to perform the
diagnostic. This model has been selected as appropriate because it meets all expectation
(column 2 in Table 5) particularly the normalized-BIC is the lowest with significance level
0.068 (>0.05).

4.3 Diagnosis and validation
For diagnostic purpose, the residual analysis of the selected appropriate model (12,1,1) has
been performed and shown as correlograms in Figure 7. The correlograms on noise
residuals are decaying within the 95% confidence level; however, lag24 indicates that there
may be some information remaining to capture. From the initial correlograms on the Log of
SbOB (Figure 6), it is also evident that the distant lag24 both in ACF and PACF may have
potential to capture the remaining information which ultimately necessitates adjusting for
the most appropriate model by investigating additional models with lag24. Emphasising on
the lag24, the additional ARIMA models (12,1,24), (24,1,12), (24,1,9), (24,1,3) and (24,1,1) are
selected for further diagnostics. This process ultimately ensures avoiding over-fitting and
reaching to a most parsimonious or stingy model. Running these additional models and
comparing the criteria values with the appropriate model selected earlier (i.e. model 12,1,1)
provide the best model.

As presented in Table 6, the further diagnostic outcomes show that (12,1,1) is still the
best model because of its generated Ljung-Box statistics with significance level >0.05 (Sen
et al., 2016) and its lowest normalized-BIC value. The other additional models mainly could

Figure 6.
Initial correlograms
of Log of SbOB at the

first non-seasonal
differencing
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not generate the required Ljung-Box statistics. The best model (12,1,1) is then run on a
different set of data (Monthly data of 2016–2017) for the validation.

The model statistics and a summary of the validation run are shown in Tables 7 and 8.
The model captured about 65.6% variance of the dependent variable through the three
predictor variables. Therefore, the uncertainty appeared as the unexplained variance of
about 34.4%. The Ljung-Box stat is reasonable with the significance level >0.05. The
ACF and PACF of the noise residual from the dependent variable are also decaying
(or flat) within the 95% confidence level as expected for a good model (shown earlier in
Figure 7).

As the model (12,1,1) well-performed in the validation stage, this model is then used for
bulk shipbuilding forecasting with the ten years’monthly data (2008-2017).

Figure 7.
Correlograms of noise

residuals from
LogSbOB of ARIMA
model (12, 1, 1) (a)
The ACF of the

residuals of ARIMA
(12, 1, 1) model on
validation data set

(Monthly 2016–2017)
(b) The PACF of the
residuals of ARIMA

(12, 1, 1) model on
validation data set

(Monthly 2016–2017)

Table 6.
The outcome criteria
values of the further
diagnostic models

Model selected!
Arima
(12,1,1)

Arima
(12,1,24)

Arima
(24,1,12)

Arima
(24,1,9)

Arima
(24,1,3)

Arima
(24,1,1)

(1) (2) (3) (4) (5) (6) (7) (8)

; Criteria Expectation
Stationary R-squired Higher value 0.726 0.770 0.782 0.809 0.795 0.798
R-squared Higher value 0.824 0.852 0.860 0.878 0.868 0.871
RMSE Lower value 0.122 0.135 0.131 0.119 0.117 0.115
MAPE Lower value 30.554 30.949 29.986 26.598 26.582 27.565
MaxAPE Lower value 1524.565 1407.358 1412.571 1200.166 1193.314 1245.573
MAE Lower value 0.066 0.073 0.069 0.064 0.066 0.065
MaxAE Lower value 0.459 0.314 0.374 0.322 0.346 0.352
Normalized- BIC Lower value �3.242 �1.949 �2.001 �2.336 �2.655 �2.799

Ljung-Box Statistics
(Sig.)

Lower value
(Sig. should
be> 0.05)

10.283
(0.068)

�
(� )

�
(� )

�
(� )

�
(� )

�
(� )

Constant Estimate
(Sig.)

Lower value
(Sig. should
be> 0.05)

�0.003
(0.995)

�0.664
(0.208)

�0.665
(0.163)

�0.636
(0.051)

�0.669
(0.013)

�0.316
(0.175)
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4.4 Forecasting and discussion
At the forecasting stage, the model (12,1,1) captures 73.3% variance of the dependent
variable through the three predictor (independent) variables in the study. The Ljung-Box
statistics is also good with the significance level >0.05, as demonstrated by other empirical
study (Sen et al., 2016). The model statistics and summary of the forecasting run are shown
in Tables 9 and 10.

Overall, the analysis of this study presents a good fit for an ARIMA model. The ARIMA
(12,1,1) model performs well for forecasting the new bulk shipbuilding order (Figure 8). The
three independent variables formed by using the econophysics approach (i.e. the law of
gravitation) support capturing about 65-73% variance of the dependent variable (i.e. the new
bulk shipbuilding order) through the ARIMA (12,1,1) model (Tables 5, 6 and 9). On the one
hand, this model can provide a useful tool for deciding on the new bulk shipbuilding order
and help investment related risk management. On the other hand, it is needed to be very
cautious as the UCL (Upper Confidence Level) and LCL (Lower Confidence Level) values and
the analyses of errors on the predicted results are very wide (see columns 4, 5, 6 and 8
of Table 11); though the errors in the percentage of the predicted values to the original
values (actual bulk new shipbuilding order) appears to be low (see column 7 of Table 11).

Table 7.
Model statistics on
the validation data
set (monthly
2016-2017)

Model Statistics

Model
No. of

Predictors

Model Fit statistics Ljung-Box Q(18)
Stationary
R-squared Normalized BIC Statistics DF Sig.

Log of SbOB_Model(12, 1, 1) 3 0.656 0.660 7.111 5 0.213

Table 8.
Model summary on
the validation data set
(monthly 2016-2017)

Model Summary
Fit statistics Mean

Stationary R-squared 0.656
R-squared 0.708
RMSE 0.356
MAPE 107.391
MaxAPE 1081.509
MAE 0.094
MaxAE 0.287
Normalized BIC 0.660
Ljung-Box Statistics (Sig.) 7.111 (0.213)
Constant Estimate (Sig.) �2.198 (0.806)

Table 9.
Model statistics on
the forecasting data
set (monthly
2008-2017)

Model Statistics

Model
No. of

Predictors

Model Fit statistics Ljung-Box Q(18)
Stationary
R-squared Normalized BIC Statistics DF Sig.

Log of SbOB_Model(12,1,1) 3 0.733 �3.427 8.677 5 0.123
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Taking into account of the UCL and LCL values for illustrating this ARIMA analysis
elevates the quality of the outcomes (Mohamadi et al., 2011).

The unexplained variance of about 27-35% might have a reflection of the constant of the
model (UB) (see Equation (2) and 3) that initially assumed to be a binary one (1) to recognise
the uncertainty part in new bulk shipbuilding order forecasting. This uncertainty is due to
the fact that shipbuilding order forecasting becomes a complex issue that plausibly arises
from international regulatory, business and ship operation environment that eventually
form a variable for behavioural pattern of shipping market players. This unpredictable
pattern is very evident in the outcome of future forecast on the bulk shipbuilding order
through the ARIMA (12,1,1) model based on the SbOB monthly data series (2008-2017)
[Figure 9 and Table 12]. For instance, the future predicted value of bulk shipbuilding order
in this study for 2018 is 18.33M dwt with the UCL and LCL values are 52.89 and 6.9M dwt
respectively, whereas an already published report shows that the actual bulk shipbuilding
order in 2018 was 48.1M dwt (BRS Group, 2019). This variable order placement may have
occurred due to the changing international regulatory, trade and climate-related operational
dynamics in the shipping industry which has different meanings to different investors.
However, new bulk shipbuilding order in the 1st half of 2019 is about 73% down in
comparison to the 1st half of 2018 (Watkins, 2019); this falling trend seems apparently
reflected in the future forecasting for 2019 (see Table 12).

Table 10.
Model summary on
the forecasting data

set (monthly
2008-2017)

Model summary
Fit statistics Mean

Stationary R-squared 0.733
R-squared 0.841
RMSE 0.121
MAPE 33.344
MaxAPE 1732.568
MAE 0.066
MaxAE 0.417
Normalized BIC �3.427
Ljung-Box Statistics (Sig.) 8.677 (0.123)
Constant Estimate (Sig.) �0.222 (0.571)

Figure 8.
Fit values of ARIMA
(12, 1, 1) model run on
the forecasting data

set (Monthly
2008–2017)
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The study reveals an important limitation of the quality of maritime data, which is
improving gradually though (World Bank Group, 2019). The lack of quality data may have
an impact on the forecasting results. It is found during the construction of the independent
(predictive) variables through econophysics approach that most of the publicly available

Table 11.
The fit values of
ARIMA (12, 1, 1)
model run on the
forecasting data set
(monthly 2008-2017)

Year Original Predicted LCL* UCL** Error

Error of Predicted
values to Original
values in (%)

Probable error
of Predicted
values in (%)

(1) (2) (3) (4) (5) (6) (7) (8)

2008 85.40 85.63 32.21 228.37 11.01 �0.27 12.85
2009 23.40 27.32 16.70 44.94 12.49 �16.75 45.71
2010 88.50 81.56 49.83 134.06 12.57 7.84 15.42
2011 39.70 42.63 25.97 69.90 11.44 �7.39 26.83
2012 24.00 24.38 14.86 39.99 13.29 �1.59 54.51
2013 75.40 69.53 42.37 114.04 13.84 7.78 19.91
2014 57.00 57.72 35.31 95.04 11.26 �1.26 19.51
2015 33.80 34.31 20.93 56.34 11.68 �1.50 34.05
2016 16.30 16.99 10.30 27.73 12.28 �4.25 72.26
2017 39.20 35.44 21.58 57.92 11.34 9.59 31.99

Notes: *Lower confidence level value; **Upper confidence level value

Figure 9.
Observed value and
future forecast
throughARIMA (12,
1, 1) model run on the
SbOBmonthly data
(2008-2017)

Table 12.
Future forecast for
new bulk
shipbuilding in
ARIMA (12, 1, 1)
model run on the
SbOB monthly data
(2008-2017)

Year

Future forecast for
New Bulk shipbuilding order

(in M dwt)
UCL**

(in M dwt)
LCL*

(in M dwt)

Available actual New Bulk
Shipbuilding order

(in M dwt)

2018 18.33 52.89 6.90 46.4
(Close to UCL)

2019 27.83 120.56 6.43 24.6
(Close to future forecast)

2020 17.69 100.80 3.14 –
2021 21.57 149.96 3.11 –
2022 16.28 137.60 1.93 –

Notes: *Lower confidence level value; **Upper confidence level value

MABR
6,3

250



reports used the Clarkson database in various ways; the presentation of these data are either
not clear or not comparable even among different reports of the same organisation. Mostly
the yearly data were available. However, the actual monthly data could reflect a better
insight of the industry.

The lack of reliable required data was another limitation, for example, the absence of
reliable bulk carrier’s speed related data which could improve the distance variable (dBsq) of
this study. In drawing resemblance to the law of gravity, the incorporation of bulk carrier’s
monthly speed data as a multiplier could better reflect the distance (dBsq) between the
“existing bulk shipping market prospect (Bfr)” and the “future bulk shipping market
prospect (Bfp)”. This improvement is noticeable while lower speed creates demand for more
shipping capacity and vice versa. However, the improvement of the independent variables
may bring more reliable forecasting results in future through this model. This inherent
opportunity to improve variables eventually ensures the robustness of the econophysics-
based ARIMA (12,1,1) model. Another limitation of this study is related to the emissions
reduction efforts from international shipping. On the one hand, the efforts of reducing
emissions from shipping would reduce the demand of resources such as coal consumption,
which in turn may impact the bulk shipbuilding sector. On the other hand, the requirement
of automation and change of the propulsion system may increase new bulk shipbuilding
order. Though these two diverse impacts scenario may have a balancing or nullifying
impact on the bulk shipbuilding order, this has not been captured in this forecasting study,
as there were lack of relevant data.

5. Conclusion
An effective shipbuilding order forecasting is a trailblazing task that relates to many
internal and external factors. The literature review of this study illustrates the constructs of
the shipbuilding market and reveals a moderate cyclical nature in the bulk shipbuilding
order forecasting. The manifestation of the moderate cyclical nature of shipbuilding (within
the period 2008–2017) has been informed in preparing the ARIMA technique to evaluate the
econophysics-based bulk shipbuilding order forecasting model of this study. Among the
main three segments of shipbuilding, bulk shipbuilding order forecasting is worth doing as
it is a relatively good indicator of global resources trade that reflects on global production
dynamics and provides an insight into the global economy.

An innovative method of forecasting can enrich forecasting study as well as can provide
an opportunity to compare with the other forecasting methods’ outcomes. In this context, an
econophysics approach has been pioneered in this study to develop a bulk shipbuilding
order forecasting model. The flexibility of the econophysics approach is also well suited to
complex shipbuilding forecasting where addressing a large number of constructs requires to
be accommodated.

The outcomes of the econophysics model indicate a relatively stable good fit. Although
relevant maritime data and its quality need to be improved, the flexibility in refining the
predictive variables ensure the robustness of this econophysics-based forecasting model.
However, the uncertainty in the external environment also looms as a critical factor in
shipbuilding forecasting that may necessitate investors to keep a cautious look at various
exogenous factors such as global maritime regulatory environment, business environment
ship’s operational environment. It is also worthwhile to state that the interpretation and
predictive power of exogenous factors may vary considerably from investors to investors
that may inspire in using this flexible econophysics-based forecasting model for bulk
shipbuilding orderbook.
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